Total No. of Questions : 6]	SEAT No. :
D305	

P207 [Total No. of Pages : 2

APR - 17/TE/Insem. - 43

T.E. (Computer Engineering)

DIGITAL SIGNAL PROCESSING APPLICATIONS

(2012 Pattern) (Semester - II) (310253)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data if necessary.
- **Q1)** a) State the mathematical models used to represent a DT system. Define these models with mathematical form. [5]
 - b) Define the Impulse Response of a DT system and show that for a causal system

$$h(n) = 0 \text{ for } n < 0$$
 [5]

OR

- **Q2)** a) A CT signal having frequency 50 Hz is sampled at a rate of 1200 samples/sec. Obtain
 - i) Number of samples per cycle.
 - ii) Digital/Discrete frequency f and ω .
 - iii) Minimum sampling rate to avoid aliasing effect.
 - iv) Period of a DT signal.

[5]

- b) State the Linearity, causality and stability properties of a DT system. [5]
- **Q3)** a) State and prove the time reversal property of Fourier Transform(FT).[5]
 - b) What do you understand by 'Indexing in Bit-Reversal' in FFT? Draw the basic butterfly structure for DIF FFT algorithm and hence obtain the computational complexity of N point DFT. [5]

OR

P.T.O.

- **Q4)** a) Perform following circular shifting operations on a given DT signal $x(n)=\{4,2,-1,3\}$ with N=4 and N=5.
 - i) $x((n-2))_{N}$

ii)
$$x((n+1))_{N}$$
 [5]

- b) What is the significance of 'N' in N point DFT? Define N point DFT by means of twiddle factor W and compute twiddle factors for N = 4. [5]
- **Q5)** a) Define ROC of ZT. How many possible ROCs a single ZT may have? Give one example. [5]
 - b) Obtain ZT of a DT signal using ZT properties where,

$$x(n) = n.u(n-1)$$
 Specify the ROC. [5]

OR

Q6) a) Draw a Pole Zero plot for a system described as-

$$y(n) = x(n) - x(n-1) + 0.2y(n-1) + 0.15y(n-2)$$
 [5]

b) Define the term system function H(Z). Express it in the form of pole zero system and define it for FIR and IIR system. [5]

ζζζ