Total No	o. of Q	uestions	:	10]
-----------------	---------	----------	---	-----

SEAT No.:	
[Total	No. of Pages : 3

P4578

[5669]-114

T.E. (Computer Engineering) DIGITAL SIGNAL PROCESSING APPLICATIONS (2012 Pattern) (Semester - II)

Time : 2½ Hours]

Instructions to the candidates:

[Max. Marks : 70]

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7, or Q.8, Q.9. or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data if necessary.
- **Q1**) a) Classify DT systems as FIR and IIR systems. Express it by means of suitable mathematical form using convolution and difference equation.[5]
 - b) How DFT is different than Fourier Transform (FT)? How one can plot the magnitude spectrum of DFT? [5]

OR

- Q2) a) State the sampling theorem and explain why the problem of aliasing observed during sampling process? [5]
 - b) Obtain the ZT of [5]

$$x(n) = \left(\frac{1}{2}\right)^n u(n)$$
 sketch the ROC

- Q3) a) Derive the first stage of Radix-2 DIT FFT algorithm. [5]
 - b) Determine the inverse Z-transform using partial fraction expansion method. [5]

$$H(Z) = \frac{1}{1 - 1.5Z^{-1} - 0.5Z^{-2}} if$$

$$ROC: |Z| > 1$$

P.T.O.

- Q4) a) Compute 4 point Circular Convolution for DT signals. [5] $x_1(n) = \{1,2,3,1\} \ x_2(n) = \{4,3,2,2\}$
 - b) State & Prove the Time Shifting and Time Reversal properties of Fourier Transform. [5]
- **Q5**) a) What are filter structures? How the Direct form and Cascade form of FIR filters are obtained and realized? [9]
 - b) Realize the system described by following difference equation using direct form -I [9]

$$y(n) = y(n-1)^{-1/2}y(n-2) + x(n)-x(n-1) + x(n-2)$$

OR

Q6) a) Obtain and realize Linear Phase FIR filter structure for a DT system.[9]

$$y(n) = x(n) + \frac{1}{3}x(n-1) + \frac{1}{4}x(n-2) + \frac{1}{4}x(n-3) + \frac{1}{3}x(n-4) + x(n-5)$$

What are the advantages of this filter structure?

- b) Derive the Direct Form-II IIR filter structure from system function H(Z) and represent it using multipliers, adders and delay elements. [9]
- **Q7**) a) Explain the features of SHARC DSP processor. List the number of DAGs with its capabilities and memory pointer registers supported by DAG.[8]
 - b) Explain applications of DSP with respective to following [8]
 - i) Telecommunication
 - ii) Biomedical

OR

- Q8) a) Explain and compare following architectures with suitable block diagram.[8]
 - i) Von Neumann Architecture
 - ii) Hardvard Architecture
 - iii) Modified Hardvard Architecture
 - b) Draw and explain the SIMD (Single Instruction Multiple Data) architecture of SHARC DSP processor [8]

[5669]-114

- **Q9**) a) Draw and explain Human Speech Model in speech synthesis and recognition. [8]
 - b) How digital image is represented by means of digital computer? How gray scale image is different than color image? What is Histogram of an image? [8]

OR

- Q10)a) What is Companding? What is its significance in audio processing? What is the impact of data rate on sound quality? [8]
 - b) With mathematical form, explain any two gray level transforms used for image enhancement. [8]

