Total No. of Questions	:	6]
P4881		

SEAT No.:			
[7] - 4 - 1	MT_	- C D	

[Total No. of Pages : 2

TE/Insem. - 147

T.E. (Computer Engineering) **OPERATING SYSTEMS DESIGN**

(2012 Pattern) (Semester - I)

Time: 1 Hour] [Max. Marks : 30] Instructions to the candidates: 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.

- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) What do you understand by free space management? Explain its different approaches. [6]
 - b) Explain booting process in detail.

OR

- Q2) a) Explain algorithm bread() and bwrite() [6]
 - b) Explain with neat diagram buffer header. [4]
- Q3) a) Explain with diagram saving context of process. [4]
 - b) Compare and contrast various approaches for Deadlock handling. [4]
 - c) What is thread? [2]

OR

- (04) a) What is a process? Explain five state process model with diagram. [5]
 - b) With given matrices, determine safe state with the help of banker algorithm. [5]

Claim Matrix C			Allocation Matrix A			Iatrix A	Resource Vector R			
		R1	R2	R3	3		R1	R2	R3	R1 R2 R3
	P1	3	2	2		P1	1	0	0	9 3 6
	P2	6	1	3		P2	6	1	2	
	P3	3	1	4		P3	2	1	1	
	P4	4	2	2		P4	0	0	2	
		.1 1 1	T 7		17 D 1	0.00	1 D	0 1		

Available Vector V: R1-0 R2-1, R3-1

P.T.O.

[4]

Q5) a) Write short note on Thrashing.

[2]

b) Explain with example any two page replacement algorithms – FIFO, Optimal, LRU. Page address stream {2,3,2,1,5,2,4,5,3,2,5,2}, frame size –3. Identify the page faults occurred. [8]

OR

Q6) a) Why is the principle of locality crucial to the use of virtual memory?Explain with example. [4]

b) What is TLB? Explain operation of TLB with neat diagram. [6]

