Seat	
No.	

[4657]-572

S.E. (Computer) (First Semester) EXAMINATION, 2014 DATA STRUCTURES AND PROBLEM SOLVING (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

N.B. :— (i) Answer four questions in all.

- (ii) Neat diagrams must be drawn wherever necessary.
- (iii) Figures to the right indicate full marks.
- (iv) Assume suitable data if necessary.
- 1. (a) Construct a logical expression for allowing purchasing using credit card if the following rules are satisfied.

The card may be used if the

- (i) Balance plus sales amount is less than the maximum allowable amount
- (ii) Last payment was less than 45 days ago
- (iii) Credit card has not expired. [3]
- (b) Sort the following data using Quick Sort Algorithm.

 $65,\ 70,\ 75,\ 80,\ 85,\ 60,\ 55,\ 50,\ 45.$

Show the output after every pass.

[4]

P.T.O.

(c) Draw the threaded binary tree equivalent for the tree represented by the following array assuming root node of tree starts with index 1 in array: [5]

0	1	2	3	4	5	6	7	8	9	10	11
	10	-	20	-	•	30	-	-		-	-
12	13	14	15	16	17	18	19	20	21	22	23
-	40	-		-	-		= 0.	<i>n</i> =		-	-
24	25	26	27	28	29	30	31				
-		50	*				-				

Or

2. (a) Find the frequency count of the following code: [3]

$$sum = 0;$$

$$for(i = 0; i < = n; i++)$$

$$for(j = 0; j < = n; j++)$$

$$sum = sum + i + j.$$

(b) Consider the following threaded binary search tree. [4]

Delete the root node of the tree and redraw the tree again with threading by maintaining the property of binary search tree.

[4657]-572

- (c) Write a non-recursive pseudo C/C++ code for any DFS traversal of binary tree. [5]
- 3. (a) Consider the following graph represented using Adjacency
 List. [4]

Find the minimum spanning tree for the above graph by using Prim's Algorithm.

- (b) Write a pseudo C/C++ code for LR and RL rotations in AVL Trees. [6]
- (c) Enlist various collision resolution techniques. [2]

Or

4. (a) Draw the BFS traversal of the following graph represented using adjacency list. [4]

[4657]-572 3 P.T.O.

- (b) Construct the AVL tree for the following data by inserting each of the following data item one at a time: [5] 10, 20, 15, 12, 25, 30, 14, 22, 35, 40.
- (c) Enlist hash functions to calculate the hash values of the data. [3]
- **5.** (a) Consider the following 5 Way B Tree: [6]

Delete root node i.e. a node with key value 16 from the above tree and redraw the tree by maintaining its B Tree property.

- (b) Build the Min-Heap for the following data: [4] 25, 12, 27, 30, 5, 10, 17, 29, 40, 35.
- (c) Explain any three operations performed on sequential files. [3]

Or

6. (a) Write a pseudo C/C++ code to sort the data using heap sort in ascending order. [7]

[4657]-572

- (b) Create a 3 way B tree by inserting the following data one at a time:

 [6]
 5, 3, 21, 9, 1, 13, 2, 7, 10, 12, 4, 8.
- 7. (a) Explain how parallel prefix computation algorithm can be applied to the following example:

Assume the prefix operation as addition. [6]

(b) Write a parallel algorithm for odd-even merge sort. Explain the algorithm with suitable example. [7]

Or

- 8. (a) Explain parallel pointer doubling algorithm with suitable example. [7]
 - (b) Write a parallel algorithm to perform the addition of the given numbers using complete binary tree method. [6]