Seat	
No.	

[5352]-167

S.E. (Computer) (Sem. II) EXAMINATION, 2018 OBJECT ORIENTED AND MULTICORE PROGRAMMING (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B.: (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right side indicate full marks.
 - (iii) Use of Calculator is allowed.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Write short notes on:

[8]

- (i) Need of object-oriented programming
- (ii) Dynamic memory allocation.
- (b) Explain array of objects with example.

[4]

Or

- 2. (a) Write a C++ program for vector addition using operator overloading. Vector consists of 2 attributes ax, ay for magnitude and direction (both int). Create 3 vectors v_1 , v_2 , v_3 with v_1 (8, 13) and v_2 (26, 7). After performing $v_3 = v_1 + v_2$; user should be able to print v_3 's ax and ay values to 34 and 20 resp.
 - (b) Differentiate between public, private and protected members. [4]

P.T.O.

3.	(<i>a</i>)	A warehouse management system requires taking user inp	ut
		and displaying items which are present. Use any STL (vector	or,
		list, etc) to implement the system. Item consist of 3 attribut	es
		(name, code both strings and price in float). Write menu drive	en
		C++ program to accept and display items.	[8]
	(<i>b</i>)	Write a short note on multiple exception handling.	[4]
		Or	
4.	(a)	Create child processes using posix_spawn() function. Use objection	ct
		oriented approach for process management. Write men	ıu
		driven $C++$ program to create n processes (where n is a	ny
		+ve integer given by user) and display their pid's on consol	le.
		All n child processes will execute the ps utility, which resid	es
		in "/bin/ps".	[6]
	(<i>b</i>)	Write in detail about anatomy/structure of a process. [[6]
5 .	(a)	What are the similarities between threads and processes? [[6]
	(<i>b</i>)	Explain in detail pthread attribute object.	[7]
		Or	
6.	(a)	Differentiate between threads and processes.	[6]
	(<i>b</i>)	Write a detailed note on termination of threads.	[7]
7.	(a)	What is persistence of an object ? Explain persistence wi	$ ag{th}$

[5352]-167 2

respect to IPC.

[4]

	(<i>b</i>)	Write short notes on IPC mechanism using:	[9]
		(i) Files	
		(ii) Shared memory	
		(iii) Pipes.	
		Or	
8.	(a)	Explain PRAM model used for synchronization.	[4]
	(<i>b</i>)	Explain the following:	[9]
		(\emph{i}) Basic semaphore operations with P() and V().	
		(ii) Mutex semaphores in POSIX.	
		(iii) Delegation model for threaded application	

[5352]-167