Total No. of Questions: 10]		SEAT No. :
P3848	[5561]-276	[Total No. of Pages : 3
	B.E. (Computer Enginee	ring)
	PRINCIPLES OF MODERN COMI	<i>G</i> ,
	(2012 Course) (410442) (Sem	
Time: 21/2	2 Hours]	[Max. Marks : 70
Instructi	ions to the candidates:	
1)	Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 o	r Q.8, Q.9 or Q.10.
,	Neat diagrams must be drawn wherever necessary	
•	Figures to the right indicate full marks.	
4)	Assume suitable data, if necessary.	
Q1) a)	Draw and explain model of LR parser.	[4]
b)	Find FIRST and FOLLOW of the following	
ŕ	$S \rightarrow v \mid XUW \mid UV \mid uWV$	
	$U \rightarrow w \mid WvX \mid SUVW \mid SWX \mid \varepsilon$	
	$V \rightarrow x \mid wX \mid \varepsilon$	
	$W \rightarrow w \mid UXW$	
	$X \rightarrow yz \mid SuW \mid SW$	
	OR	
Q2) a)	Generate annotated parse tree for following	g expression : $a*b-c/e + f.[4]$
b)	Construct LALR items for following gram	
·	$S \to AA, A \to aA b.$	
Q3) a)	What is top down parsing? What are the pro-	olems with top down parsing?
		[4]
b)	Write the quadruple, triple, indirect triple for $a := b * -c + b * -c$.	or the statement [6]
	a b - c + b - c.	
Q4) a)	Write short note on type checking & type	conversion. [4]

[6] Generate three address code for following code, b)

While (a - b) do

If(cod) then

$$x = y + 2$$

else

$$x = y - 2.$$

P.T.O.

- **Q5)** a) Write a note on a simple code generator.
 - What are the principle sources of optimization? Give example of each. [6] b)
 - Write 3-Address code for following code and then perform optimization c) technique [8]

```
for (i = 0; i \le n; i++)
for (i = 0; i \le n; i++)
          for (j = 0; j \le n; i++)
                for (k = 0; k \le n; k++) { c[i, j] = c[i, j] + a[i, k]*b[k, j];
             }
       }
```

OR

- Define induction variable. Give examples. **Q6)** a)

[4]

[4]

- Explain the use of algebraic transformations with an example. b) [6]
- Optimize and develop this code by eliminating common sub expression, c) performing reduction in strength on induction variables and eliminating all the induction variable you can [8]

```
t6 = 4*i
                           B2: i = i + 1
                                t2 = 4*i
x = a[t6]
t7 = 4*I
                                t3 = a[t2]
t8 = 4*i
                           if t3 < a[t1] goto B2
t9 = a[t8]
a[t7] = t9
t10 = 4*i
a[t10] = x
goto B2.
```

[5561]-276

2

Q 7)	a)	Explain identification w.r.t. context handling.	
	b)	What are different types of routine. Explain each.	
	c)	List and Explain the Key features of functional programming language	
		OR	
Q8)	a)	Explain Object Oriented Source language Issues.	[6]
	b)	Write short note on Java CC.	[6]
	c)	Give which aspect of Haskell corresponds to which compiler phase.	[4]
Q9)	a)	Explain message passing and its issues related to parallel programmir model.	
	b)	Describe the object replication, migration and location w.r.t. to Object Oriented languages.	
	c)	Give details of Just In Time compiler.	[4]
		OR	
Q10) a)	Differentiate between:	[6]
		i) Parallel and distributed systems.	
		ii) Multicomputers and multiprocessors.	
	b)	Describe the compilation framework LLVM.	[6]
	c)	What is interpreter? Explain JVM as an interpreter.	[4]

