Total No. of Questions : 6]	SEAT No.:
P114	[Total No. of Pages : 2

Oct.-16/BE/Insem.- 172

B.E. (Computer Engineering)

PRINCIPLES OF MODERN COMPILER DESIGN

		(2012 Pattern) (Semester - I)	
Time: 1 Hour] [Max		rks : 30	
Insti	ructi	ions to the candidates:	
	1)	Neat diagrams must be drawn wherever necessary.	
	<i>2)</i>	Figures to the right indicate full marks.	
	3)	Assume suitable data, if necessary.	
Q1)	a)	What are different storage allocation strategies? Explain.	[4]
	b)	Define lexeme, token.	[2]
	c)	What are symbol tables? Explain in brief the different ways of orgathe symbol table.	anizing [4]
		OR	
Q2)	a)	Explain briefly about input buffering in reading source program for tokens.	finding [4]
	b)	Write regular expression for floating point number.	[2]
	c)	Explain Garbage collection techniques.	[4]
Q3)	a)	Compare top down and bottom up parsers.	[2]
	b)	Explain type checking and type conversion.	[2]
	c)	Check if following grammar is LL (1) or not	[6]
		$X \rightarrow YZ$	
		$Y \rightarrow m n \epsilon$	
		$Z \rightarrow m$	

P.T.O.

Q4)	a)	What is an ambiguous grammar? Give an example.	[2]
	b)	Explain Closure function for constructing SLR parsing table.	[2]
	c)	Construct a canonical parsing table for the grammar given below.	[6]
		Grammar $G=\{N,T,S,P\}$,	
		Nonterminals $N = \{S,A,B\}$ and terminals $T = \{a,b\}$, S is the start synand P is a set if productions.	nbol
		S->AB	
		A->aA	
		A->a	
		B->Bb	
		B-> b	
Q5)	a)	Explain the following terms.	[4]
		i) Synthesized attributes.	
		ii) Inherited attributes.	
	b)	Explain advantages of intermediate code.	[2]
	c)	Generate three address code and quadruples for the following.	[4]
		a=b*-c+b*-c	
		OR	
Q6)	a)	Explain L-attributed Definition.	[2]
	b)	Explain syntax tree and DAG.	[2]
	c)	Write syntax directed translation scheme for Boolean expression.	[6]
		Generate intermediate code for following.	
		a b and c <d< td=""><td></td></d<>	

000