Total No. of Questions : 6]	SEAT No.:	
P119	[Total No. of Pages : 2	

Oct.-16/BE/Insem.- 177

B.E. (Computer Engineering) (Semester - I) DATA MINING TECHNIQUES AND APPLICATIONS (2012 Pattern) (Elective - I(d))

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Describe three challenges to data mining regarding data mining methodology.[6]
 - b) Consider the following group of data [4] 200, 300, 400, 600, 1000
 - i) Use the min-max normalization to transform value 600 onto the range [0.0,1.0].
 - ii) Use the decimal scaling to transform value 600.

OR

- **Q2)** a) What are the major tasks in data preprocessing? Explain them in brief.[6]
 - b) Differentiate between
 - i) Supervised and Semi-supervised learning.
 - ii) Classification and Regression.
 - iii) Descriptive and Predictive data mining tasks.
- *Q3)* a) A database has five transactions:

TID	Items	
1	F,C,A,M,P	
2	F,C,A,B,M	
3	F,B	
4	C,B,P	
5	F,C,A,M,P	

Assuming the support count 2, construct an FP-tree.

b) State the antimonotonicity property.

[2]

[4]

[5]

c) Define k--itemset, support count and strong association rules.

P.T.O.

[3]

Q4) a) Differentiate between

[4]

- i) Multilevel and multidimensional associations
- ii) Pattern-pruning and data-pruning constraints
- b) A database has five transactions. Let minimum support is 60%. [6]

TID	Items
1	Butter, Milk
2	Butter, Dates, Balloon, Eggs
3	Milk, Dates, Balloon, Cake
4	Butter, Milk, Dates, Balloon
5	Butter, Milk, Dates, Cake

Find all the frequent item sets using Apriori algorithm. Show each step.

Q5) a) Explain the following terms

[6]

- i) Posterior probability
- ii) Prior probability
- iii) Class-conditional independence
- b) Explain with neat diagram confusion matrix for a two class problem.[4] OR
- Q6) a) Consider the training examples shown in the table below for a binary classification problem.[6]

1		
Al	A2	Class
Т	T	Yes
T	Τ	Yes
T	F	No
F	F	Yes
F	T	No
F	T	No
F	F	No
Т	F	Yes
F	Т	No

- i) Compute the information gain for A1.
- ii) Compute the information gain for A2.
- iii) What is the best split between A1 and A2 according to Information gain?
- b) Define the following terms with respect to Classifier

[4]

i) Precision ii) Recall iii) Accuracy iv) Misclassification rate.

000

Insem. - 177