SEAT No.:

P1948

[Total No. of Pages: 4

[5059]-509

B.E. (Civil Engineering)

MATRIX METHODS OF STRUCTURAL ANALYSIS

(2012 Pattern) (Elective - II)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:-

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.
- **Q1)** a) Solve the following system by Gauss-Jordan Method

$$x + y + z = 5$$

$$2x + 3y + 5z = 8$$

$$4x + 5z = 2$$

b) Analyse the beam ABC shown in Figure 1 using flexibility matrix method. AB = 3 m and BC = 6 m. Take EI = constant [6]

Figure 1

c) A rod is composed of an aluminum section rigidly attached between steel and bronze as shown in Figure 2. If the cross-section area of rod is 800 mm^2 determine nodal displacements. Take $E_{st} = 210 \text{ GPa}$, $E_{Al} = 70 \text{ GPa}$ and $E_{br} = 110 \text{ GPa}$.

P.T.O.

[6]

Q2) a) Solve the following system by Gauss-Elimination Method [6]

$$x + y + z = 5$$
$$2x + 3y + 5z = 8$$
$$4x + 5z = 2$$

b) Find the vertical and horizontal deflection at point C for the two member truss as shown in Figure 3. Area of inclined member is 2000 mm^2 whereas horizontal member is 1600 mm^2 . Take E = 200 GPa

c) Analyse the beam ABC shown in Figure 4 using flexibility matrix method. Take EI = constant. [8]

Q3) Analyze the continuous beam ABCD as shown in Figure 5 using stiffness matrix method. Take EI constant. Draw BMD[18]

OR

2

[5059]-509

Q4) Determine the unknown joint displacements of the portal frame as shown in Figure 6 using stiffness matrix method. Take EI constant. [18]

Q5) Derive the stiffness matrix and transformation matrix of two noded grid element of with 06 D.O.F., length L, flexural rigidity EI and torsional rigidity GJ. [16]

OR

Q6) Analyze the grid structure ABC as shown in Figure 7 using stiffness matrix method. Take $EI=2\times10^5$ kN.m² and $GJ=1.2\times10^5$ kN.m². [16]

Q7) For the truss shown in Figure 7, use stiffness matrix method to determine the deflections at the loaded joint. Take E = 200 GPa and c/s area of all members 1000 mm^2 .

[5059]-509

www.manaresults.co.in

OR

3

Q8) a) A beam of span '8m' is fixed at both ends 'A' and 'B' and supports a uniformly distributed load of 10 kN/m over the entire span. Estimate the deflections of quarter span intervals using second order central difference formula.

b) Estimate the lowest buckling load 'P' of a uniform pin ended column of length 'L = 10 m', cross-sectional area 100×100 mm and E = 200 GPa using three sub intervals. Apply finite difference method. [8]

