Total No. of Questions :10]	
P3655	

SEAT No.:		
[Total	No. of Pages	:3

[4959] - 1004

B.E. (Civil)

STRUCTURAL DESIGN OF BRIDGES

(Elective - I) (2012 Course) (Semester - I)		
Time	e : 2½ Hours]	[Max. Marks :70
Instr	ructions to the candidates:	
	1) Attempt Q.1 or Q. 2; Q. 3 or Q. 4; Q. 5 or Q. 6; Q. 7 or Q. 8	; and Q.9 or Q.10.
	2) Figures in bold to the right indicate full marks.	
	3) IRC: 6, IRC: 112, IS 456, IS 800, IS 1343 and Steel tall examination.	ble are allowed in the
	4) Neat diagrams should be drawn wherever necessary.	
	5) If necessary, assume suitable data and indicate clearly.	
	6) Use of electronic pocket calculator is allowed.	
Q1)	Explain the loadings considered on highway RC bridges.	[10]
	OR	
Q2)	Write a note on different loadings adopted for railway ste	eel bridges. [10]
Q3)	Explain Pigeaud's curves with an example?	[10]

OR

Q4) Explain the procedure to obtain maximum bending moment and shear force on an intermediate longitudinal girder. [10]

P.T.O.

- **Q5)** Design the members L_0 - L_1 , L_0 - U_1 for the broad gauge railway steel truss bridge shown in Fig. 1. The details are as follows. [18]
 - a) Weight of stock rail = 0.55 kN/m,
 - b) Weight of check rail = 0.5 kN/m
 - c) Sleepers of size = $(0.25 \times 0.25 \times 2.5)$ m @ 0.40 m c/c
 - d) Unit weight of sleepers = 7.8 kN/m^3
 - e) Spacing of truss = 4.50 m c/c
 - f) Equivalent uniformly distributed load for BM and SF are 2874 kN and 3161 kN respectively
 - g) CDA = 0.361

Fig. 1

OR

- **Q6)** For the Problem given in Q.5 design the members U_1 - L_2 and U_1 - L_1 . [18]
- Q7) Design a rocker bearing for the given data and also sketch the details. [16]
 - a) Maximum normal load = 2250 kN
 - b) Minimum normal load = 750 kN
 - c) Lateral load = 48 kN
 - d) Longitudinal load = 110 kN

OR

[4959] - 1004

- **Q8)** a) Explain the classification of various types of bearings with neat sketches. [8]
 - b) Explain the design procedure for elastomeric bearing. [8]
- **Q9)** Explain the steps involved in design of abutment. [16]

OR

- *Q10)* Design a RC abutment for a RC T-beam deck slab bridge with the following data.
 - a) Span = 10m
 - b) Width of carriageway = 7.5 m
 - c) Live load on the deck slab = IRC Class AA
 - d) Dead weight of span = 3500 kN
 - e) Longitudinal force = 250 kN
 - f) Height of abutment from the top of footing to bearing level = 9.85 m
 - g) Unit weight of backfill soil = 18 kN/m³
 - h) Allowable bearing pressure = 225 kN/m^2
 - i) Materials = M 30 grade concrete and steel of grade Fe 500

લ્ક્કાલ્ક્ક