SEAT No.:	

P4901

[Total No. of Pages :4

[4959] - 1005

B.E. (Civil) (Semester - I)

SYSTEMS APPROACH IN CIVIL ENGINEERING (2012 Course)

Time : 2½ *Hours*]

[Max. Marks:70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q. 7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- **Q1)** a) Explain the applications of Systems Approach in following areas. [5]
 - i) Production
 - ii) Procurement
 - iii) Marketing
 - iv) Finance
 - v) Personnel
 - b) State whether following functions are convex or concave. [5]
 - i) $F(x) = x^3 x^2 x + 5$
 - ii) $F(x) = x^2 \log(x)$

OR

- Q2) a) Explain Hessian Matrix and state the conditions for concave and convex function for bivariable problems. [5]
 - b) State the points of differences between Dichotomous Search, Fibonacci and Golden section methods. [5]
- **Q3)** a) Explain following notations which represent queuing models. [5]
 - i) $(M/M/1):(SIRO/\infty/\infty)$
 - ii) $(M/E/c): (FCFS/N/\infty)$
 - b) Explain the steps in Lagrangian Multiplier technique of optimisation. [5]

P.T.O.

Q4) a) Find the sequence that minimizes the total elapsed time to complete the following jobs in the order BA. [5]

Jobs (Processing times in minutes)

	1	2	3	4	5	6	7
machines A	12	6	5	11	5	7	6
В	7	8	9	4	7	8	3

Find total elapsed time.

- b) What is simulation? How can you use Monte Carlo simulation to solve industrial problems? [5]
- Q5) a) What is Dynamic Programming? Write step by step procedure to solve the general problem by DP approach.[8]
 - b) In an investment project, 10 units of money are available for allocation in three investment programmes. The returns are as follows. What is the optimal investment policy? [8]

		Returns										
Investment		0	1	2	3	4	5	6	7	8	9	10
	A	0	5	15	40	62	80	88	90	98	110	115
policy	В	0	6	18	45	70	83	92	95	100	120	125
	С	0	4	13	42	60	78	85	88	95	100	105

OR

- **Q6)** a) What is the need of Dynamic Programming? How is it different from LP? Write some applications of DP. [8]
 - b) Find the shortest path from node 1 to node 11 through the network as given below. [8]

Node	Distance	Node	Distance	Node	Distance
1-2	5	3-6	5	5-10	5
1-3	2	3-7	2	6-9	8
1-4	7	3-8	1	6-10	4
2-5	8	4-6	6	7-9	4
2-6	9	4-7	8	7-10	3
2-7	6	4-8	7	9-11	2
3-5	4	5-9	9	10-11	3

Q7) a) Explain the meaning of duality in L.P. What are the advantages of solving a minimization problem by converting it into maximization problem? [6]

Maximize
$$Z = x_1 + x_2/2$$

Subject to
$$3x_1 + 2x_2 \le 8$$

$$5x_1 \le 10$$

$$x_1 + x_2 \le 8$$

$$-x_1 + x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

c) Solve the following by graphical method

[6]

$$Minimize Z = 60x + 40y$$

Subject to

$$3x + 10y \ge 240$$

$$10x + 10y \ge 160$$

$$20x + 60y > 480$$

$$x, y \ge 0$$

OR

Q8) a) Solve by using big M method.

[8]

Maximize
$$Z = 4x_1 + 3x_2 + 5x_3$$

Subject to

$$x_1 + 3x_2 + 2x_3 \le 10$$

$$2x_1 + 2x_2 + x_3 \ge 6$$

$$x_1 + 2x_2 + 3x_3 = 14$$

$$x_1, x_2, x_3 \ge 0$$

b) A pharmaceutical company produces two drugs A and B which are sold at a rate of Rs. 9.6 and Rs. 7.8 respectively. The main ingredients are *x*, *y* and *z* and they are required in the following proportions. [10]

Drugs	x%	y%	Z%
A	50	30	20
В	30	30	40

The total available quantities of different ingredients are 1600 in x, 1400 in y and 1200 in z the cost in Rs. of x,y and z per gm are Rs. 8, Rs.6 and Rs.4 respectively. Estimate the most profitable quantities of A and B to produce, using Simplex method.

Q9) a) Determine optimum solution by using VAM method for following transportation problem. Optimise using u-v method. [10]

\mathbf{r}	, •	, •	
Des	ร†าก.	ลโาด	าทร
	JULI	aut	,110

		1	2	3	4	5	Supply
	A	2	11	10	3	7	6
Origins	В	1	4	7	2	1	10
	C	3	9	4	8	12	9
	Demand	4	4	4	7	6	

b) Assign the jobs to employees to minimize cost.

[6]

Emp	loyees

Jobs

	A	В	C	D
1	7	9	3	3
2	2	6	1	6
3	6	5	3	4
4	9	10	7	1
5	5	2	2	4

OR

Q10)a) National Oil company has 3 refineries and 4 depots. Transportation cost per ton, capacities and requirements are as given below. Determine optimum allocation of output.[8]

					Capacity
	D_1	D_2	D_3	D_4	(tons)
R_1	5	7	3	10	700
R_2	8	6	14	13	400
R_3	12	10	9	11	800
auired	200	600	700	400	

b) Assign tasks to employees to minimize cost.

E

[8]

	A
	В
Employees	C
	D

TUSKS					
	1	2	3	4	5
	25	30	70	40	60
	10	10	45	40	50
	55	40	25	55	40
	60	70	10	35	30
	30	55	60	20	35

Tasks

XXXX