Total No.	of Questions	:	6]	
-----------	--------------	---	----	--

SEAT No.:	
-----------	--

[Total No. of Pages : 2

P81
APR - 18/BE/Insem. - 39

B.E. (Electrical)

POWER ELECTRONICS CONTROLLED DRIVES

(2012 Pattern) (Semester - II) (403148)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Que. 1 or Que. 2, Que. 3 or Que. 4, and Que. 5 or Que. 6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Derive criteria of steady state stability of an electrical drive system. [5]
 - b) State the factors on which the choice of an electrical drive depends. [5]

OR

Q2) a) A drive has following equations for motor and load torque: [4]

$$T = A + B\omega_m$$
 and $T_L = C + D\omega_m$

Obtain equilibrium points and determine condition of steady state stability.

- b) Explain components of load torque required by the load at the shaft.[6]
- **Q3)** a) Explain DC series motor plugging with its speed torque characteristics. [5]
 - b) Explain chopper controlled fed DC separately excited drive for motoring operation. Draw output voltage and current waveform also. [5]

OR

P.T.O.

- **Q4)** a) What are the advantages of electrical braking over mechanical braking. [4]
 - b) A 220V, 1500rpm, 10A, $R_a = 2\Omega$ separately excited DC motor is fed from a 1 ϕ fully controlled rectifier with an ac source voltage of 230V, 50Hz. Assuming continuous conduction, calculate firing angle α for:
 - i) Half rated motor torque and 500rpm
 - ii) rated motor torque and (-1000) rpm [6]
- **Q5)** a) Explain AC dynamic(rheostatic) braking of 3\$\phi\$ Induction motor with two lead connection. [5]
 - Explain thyristorised stator voltage control of 3φ Induction motor. State the limitation of stator voltage control method.

OR

- **Q6)** a) A star connected squirrel cage Induction motor has following ratings and parameters: 400V, 50Hz, 4pole, 1370rpm, Rs = 2Ω , R_r = 3Ω , $X_s = X_r = 3.5\Omega$. I.M. is controlled by VSI at constant V/f ratio. Inverter allows frequency variation from 10Hz to 50Hz. For regenerative braking operation of VSI fed I.M. determine: [6]
 - i) Speed for frequency of 30Hz and 80% of full load torque.
 - ii) Frequency for a speed of 1000rpm and full load torque.
 - b) Explain closed loop speed control of three phase Induction motor. [4]

BE/Insem. - 39