Total 1	No.	of Q	uestions	:	10]	
---------	-----	------	----------	---	-----	--

SEAT No. :	
------------	--

[Total No. of Pages: 3

P3077

[5154]-643

B.E.(Electrical)

POWER ELECTRONICS CONTROLLED DRIVES (2012 Pattern) (Semester-II)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Use of Calculator is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) What are different load torque components? Explain with their characteristics. [5]
 - b) A drive has following equations for motor and load torques: [5]

 $T = (15 + 0.5\omega_m)$ and $T_1 = 5 + 0.6\omega_m$ Obtain the equilibrium points and comment on their steady state stability.

OR

- Q2) a) A 220 V, 1500 rpm, 10 A separately excited dc motor is fed from a single phase fully controlled rectifier with an AC source voltage of 230 V, 50 Hz. Ra= 2Ω . Assuming continuous conduction calculate firing angle for rated motor torque and (1000) rpm.
 - b) Explain following braking methods along with their torque speed characteristics of DC separately excited motors. [6]
 - i) Regenerative Braking
 - ii) Dynamic braking.

- Q3) a) A 220 V, 970 rpm, 100 A dc separately excited motor has an armature resistance of 0.05Ω . It is braked by plugging from an initial speed of 1000 rpm. Calculate the resistance to be placed in armature circuit to limit braking current to twice the full load value. [6]
 - b) With a neat diagram explain the regenerative braking mode of DC separately excited motor using class B chopper. [4]

OR

Q4) a) A star connected squirrel cage induction motor has following ratings and parameters:400 V, 50 Hz, 4 pole 1370 rpm Rs = 2Ω , Rr' = 3Ω ,

$$X_S = X_{r'} = 3.5\Omega.$$
 [5]

For regenerative braking Assuming motor speed torque characteristics from full load motoring to full load braking to be parallel straight lines, calculate Speed for a frequency of 30 Hz and 80% of full load torque.

- b) Explain the thyristorised stator voltage control of 3 ph induction motor. What are its demerits? [5]
- **Q5)** a) Explain the principle of vector control. How Induction Motor is converted to Characteristics of DC Motor? [10]
 - b) Compare and comment on relative merits and demerits of VSI and CSI for induction motor drives. [6]

OR

- Q6) a) How speed control is achieved using Vector control of induction motor?Draw vector diagram and explain. [10]
 - b) Write in brief about control and applications of AC Servo Drives. [6]
- **Q7)** a) Draw neat diagram to explain Permanent Magnet Brushless DC Motor.[8]
 - b) Explain unity power factor control of Permanent Magnet Brushless DC

[5154]-643

		Motor.	[8]				
		OR					
Q8)	a)	How constant torque angle control is used for Permanent Mag Brushless DC Motor?					
	b)	Comment on use of Sensorless control of PM BLDC drives.	[8]				
Q9)	Solv	re any three:					
	a)	What special considerations are needed for inverter duty motors?	[6]				
	b)	What are the requirements of drive for rolling mill operations?	[6]				
	c)	Why controlled torque starting is necessary in Textile machinery drive How is it achieved?	es? [6]				
	d)	What are the requirements of drive in sugar mills? Explain duty cycle sugar centrifuge.	o [6]				
		OR					
Q10)Solv	re any Three:					
	a)	What are various motor duty patterns? How are motors classified bas on duty?	sec [6]				
	b)	Which motors are used widely for machine tool drives? Why?	[6]				
	c)	How motor duty and heating and cooling cycle affects the temperate of motor? Explain.	ure [6]				
	d)	Why 4 quadrant operation of drive is needed for rolling mill drive?	[6]				

••••