Total No of Questions: [8]

SEAT NO. :

[Total No. of Pages : 1]

S.E. 2012 (Electronics/E&Tc) COMPUTER ORGANIZATION (Semester - II)

Time: 2 Hours

Max. Marks: 50

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.

3) Assume Suitable data if necessary

Q1)	a)	Draw and explain the Von Neumann architecture	[6]
	b)	Represent (178.1875) 10 in single precision floating point format	[6]
		OR	
Q2)	a)	Explain pipelining & superscalar operation	[6]
	b)	multiply the following numbers using bit pair recoding method	[6]
		Multiplicand 01111 (15)	
		Multiplier 10110 (-10)	
Q3)	a)	Write control sequence for execution of instruction ADD (R1), R2 using single	[6]
		bus organization	
	b)	Draw and explain the interface between printer and processor	[6]
		OR	
Q4)	a)	Explain different methods to handle multiple interrupt requests	[6]
	b)	Explain the steps involved in fetching a word from memory	[6]
Q5)	a)	Draw and explain the structure of Asynchronous DRAM and hence explain how	[7]
		the data can be read or written in the DRAM	
	b)	Explain different mapping schemes for cache memory	[6]
		OR	
Q6)	a)	Explain the concept of virtual memory. Explain how virtual address is translated	[6]
		to physical address.	
	b)	With the help of a neat diagram, explain the working principle of SRAM	[7]
Q7)	a)	Explain the following instructions of 8086 with suitable example	[6]
		i) XLAT ii) DAA iii) PUSH iv) IN v) TEST vi) LEA	
	b)	Explain interrupt structure of 8086	[7]
		OR	
Q8)	a)	Explain the following addressing modes of 8086 with examples	[6]
		i) String addressing	
		ii) Based Indexed addressing	
		iii) Direct addressing	
	b)	Draw the bit pattern for flag register of 8086 and explain significance of each bit	[7]
		www.manaresults.co.in	