Total No. of Questions-8]
[Total No. of Printed Pages-4

Seat No.	

[5352]-133
S.E. (E\&TC/ELECTRONICS) (I Sem.) EXAMINATION, 2018 NETWORK THEORY
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Figures to the right indicate full marks.
(iii) Assume suitable data, if necessary.

1. (a) For the network shown below, find current through 7Ω resistor using superposition theorem.

(b) Explain the following terms with example :
(i) Oriented graph
(ii) Rank of graph
(iii) CoTree
(iv) Twig.

Or

2. (a) Obtain Thevenin's equivalent circuit w.r.t. points A \& B for the circuit below :

(b) Find the maximum possible number of trees for the network shown in Fig.

3. (a) The switch is closed at $t=0$. Find value of $i, \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$. Assume initial current of inductor to be zero. [6]

(b) An inductive coil having resistance of 50Ω and inductance of 0.05 H is connected in series with $0.02 \mu \mathrm{~F}$ capacitor. Find :
(i) Q factor of coil
(ii) Resonant frequency
(iii) Half power frequency.

Or

4. (a) In Fig., the switch ' S ' is opened at $t=0$. Find the expression for voltage across C for $t>0$. Also find voltage at $t=0.036 \mathrm{sec}$.

$$
\begin{equation*}
10 \mathrm{~V} \frac{+\mathrm{I}}{-\mathrm{T} \mathrm{R}_{1}=50} \sum_{\Omega}^{t=0} \mathrm{~S} \quad \mathrm{~S}=100 \mu \mathrm{~F} \tag{6}
\end{equation*}
$$

(b) Define Q -factor and derive equations for Q -factor of L\&C.
5. (a) For any symmetrical network, prove that the characteristic impedance z_{0} is the geometric mean of open and short circuit impedances.
(b) Design constant K-HPF having cut-off frequency 5500 Hz and design impedance of 750Ω. Draw :
(i) T-section
(ii) π-section.

Or

6. (a) Design a symmetrical π attenuator to work into 600Ω and provide a loss of 20 dB .
(b) What are the limitations of prototype filters ? How these limitations are overcomed using m-derived filters ? Explain composite filters with its block diagram.
7. (a) Derive the condition of reciprocity and symmetry for z parameters.
(b) Determine the transmission parameters for the network shown in Fig.

Or

8. (a) Current I_{1} and I_{2} entering at port 1 and port 2 respective of two port network are given by the following equations :

$$
\begin{align*}
& \mathrm{I}_{1}=0.5 \mathrm{~V}_{1}-0.2 \mathrm{~V}_{2} \\
& \mathrm{I}_{2}=0.2 \mathrm{~V}_{1}+\mathrm{V}_{2} \tag{7}
\end{align*}
$$

Find z parameters.
(b) Write a short note on : Pole-zeros of network functions and stability.

