Total No. of Questions-8]
[Total No. of Printed Pages-5

No.
[5559]-135
S.E. (E\&TC/Electronics) (I Sem.) EXAMINATION, 2019 NETWORK THEORY
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q . No. 6, Q. No. 7 or Q. No. 8.
(ii) Figures to the right indicate full marks.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Use of non-programmable electronic pocket calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Determine I_{1} in the circuit shown in Fig. using Kirchhoff's laws.

P.T.O.
www.manaresults.co.in
(b) For the given figure shown by firm lines as tree including branches 1, 5, 7, 3 find :
(i) Incidence matrix
(ii) Fundamental cutset matrix
(iii) Fundamental tieset matrix.

Or
2. (a) State and explain maximum power transfer theorem in detail.
(b) Draw dual of network shown.

[5559]-135
3. (a) The switch is opened at $t=0$ for the network shown in Fig. Find voltage labelled V at $t=200 \mathrm{~ms}$ and also plot $\mathrm{V}(t)$.

(b) An inductive coil having resistance of 50Ω and an inductance of 0.05 H is connected in series with $0.02 \mu \mathrm{~F}$ capacitor. Find :
(i) Q factor of coil
(ii) Resonant frequency
(iii) Half power frequency.

Or

4. (a) Prove that resonant frequency is the geometric mean of two half power frequencies.
(b) For the circuit shown in Fig. the switch ' s ' is at position ' 1 ' and steady state condition is reached. The switch is moved to position ' 2 ' at $t=0$. Find the current in both cases i.e. with switch at position ' 1 ' and switch at position ' 2 '. [6]

5. (a) A symmetrical T network is composed of pure resistances of the following values at open and short circuit impedance :

$$
\begin{aligned}
& \mathrm{Z}_{0 \mathrm{C}}=800 \Omega \angle 0^{\circ} \\
& \mathrm{Z}_{5 \mathrm{C}}=600 \Omega \angle 0^{\circ}
\end{aligned}
$$

Determine characteristic impedance Z_{0}, Z_{1} and Z_{2} for the T network.
[6]
(b) Design a constant K LPF with $f_{c}=1 \mathrm{kHz}$ and $\mathrm{R}_{0}=600 \Omega$. At what frequency α will be 10 dB ?

Or
6. (a) Define attenuation in Neper and Decibel. Derive the relationship between Neper and Decibel.
(b) Design a suitable matching half section to match a symmetrical T network with $\mathrm{Z}_{0 \mathrm{~T}}=500 \Omega$ to a generator having an internal resistance equal to 200Ω ?
7. (a) Find the Z parameters of the network shown in Fig. [6]

[5559]-135
(b) Find input impedance $\mathrm{Z}_{\mathrm{in}}(s)$ and plot its poles and zeros for the circuit shown in Fig.

Or
8. (a) Find Y parameters for the network shown in Fig.

(b) Define symmetrical network. Derive expression for condition of symmetry for T network.

