Total No. of Questions-8]
[Total No. of Printed Pages-5
Seat
No.
[5252]-133
S.E. (E\&TC/Electronics) (I Semester) EXAMINATION, 2017 NETWORK THEORY
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
(ii) Figures to the right indicate full marks.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Assume suitable data if necessary.
(v) Use of non-programmable calculator is permitted.

1. (a) Determine Vx in the circuit of Fig. 1, using Kirchhoff's laws.[6]

Fig 1.
(b) Draw the dual of the network shown in Fig. 2.

Fig. 2
P.T.O.

Or

2. (a) Determine the Thevenin equivalent of the network shown in Fig 3.

Fig. 3
(b) For the oriented graph shown in Fig. 4. Determine the Tieset matrix and f-cutset matrix.

Fig. 4
3. (a) The switch is opened at $t=0$ for the network shown in Fig. 5, Find voltage labeled V at $t=200 \mathrm{~ms}$ and also plot $\mathrm{V}(t)$.[6]

Fig. 5
[5252]-133
2
(b) A series RLC circuit consists of $R=100 \Omega, L=0.02 \mathrm{H}$ and $\mathrm{C}=0.02 \mu \mathrm{f}$. Calculate frequency of resonance. Calculate voltage across L and C at frequency of resonance. Also find maximum current in the circuit.

Or
4. (a) In the circuit shown in Fig. 6, the switch is changed from position 1 to 2 at $t=0$. Determine initial conditions of $i, d i / d t, d^{2} i / d t^{2}$ at $t=0^{+}$.

Fig. 6
(b) Explain the variation of voltage across R, L and C on graph with frequency at resonance. Also write the equation of frequencies at which voltage across C and L are miximum.
5. (a) If the measurements made on a box enclosing a two-port network are $\mathrm{Z}_{l o c}=40 \angle 0^{\circ} \Omega, \mathrm{Z}_{l s c}=22.3 \angle 29.8^{\circ} \Omega$. Find the values of characteristic impedance and propagation constant along with attenuation constant and phase constant, if the network is symmetrical.
(b) Design a constant k high pass π section filter to have a design impedance of 600Ω. The filter must have attenuation of 8.11 dB at 4.5 KHz . Also calculate phase angle at $f=5.5 \mathrm{kHz}$.[6]

Or
6. (a) Design m-derived T section LPF having cutoff frequency of 5 KHz and impedance of 600Ω. The frequency of infinite attenuation is 1.25 times the cutoff frequency.
(b) Define attenuation in Neper and Decibel. Derive the relationship between Neper and Decibel.
7. (a) Find Z parameters for the network shown in Fig. 7

Fig. 7
(b) Find the driving point admittance $\mathrm{Y}(\mathrm{s})$ for the network shown in Fig.8. Also plot pole zero diagram.

Fig. 8

Or
8. (a) Define symmetrical network. Derive expression for condition of symmetry for T parameter.
(b) Determine hybrid parameters for the network shown in Fig. 9.

Fig. 9

