[Total No. of Printed Pages—4

Seat	
No.	

[5668]-137

S.E. (E&TC/Elect.) (First Sem.) EXAMINATION, 2019

NETWORK THEORY

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. := (i) Neat diagram must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam table is allowed.
 - (iv) Assume suitable data, if necessary.
- **1.** (a) State KVL and KCl.

[6]

(b) The reduced incidence matrix is:

[6]

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix}$$

- (i) Draw the graph.
- (ii) How many trees are possible?

P.T.O.

2. (a) Find the current through 1 Ω using superposition theorem. [6]

(b) Explain with neat diagram:

[6]

- (i) Oriented graph
- (ii) Tree
- (iii) Co-tree.
- 3. (a) Derive the expression for current through inductor for $t \ge 0$.

(b) Define the following terms:

[6]

- (i) Resonant frequency
- (ii) Bandwidth
- (iii) Quality factor.

[5668]-137

4.	(a)	Draw transient response for 2nd order RLC circuit and explain
		rise time and settling time. [6]
	(<i>b</i>)	A series resonant circuit has a bandwidth of 200 Hz and contains
		a 10 mH inductance and a 10 μF capacitance. Determine : [6]
		(i) f_0
		(ii) Q_0 and
		(iii) Impedance Z at resonance.
5.	(a)	What is Filter? Explain different types of filters in brief
		(any <i>two</i>). [6]
	(<i>b</i>)	Design symmetrical T type attenuator with attenuation of 40 dB
		and design resistance of 1200 Ω . [7]
		Or
6.	(a)	Design a constant k type low pass filter with the following
		specifications : (Both T & π) [6]
		Design resistance $R_0 = 600 \Omega$ and
		Cut-off frequency $F_c = 10$ kHz.
	(<i>b</i>)	Explain the terms Decibel and Neper. Derive relation between

[5668]-137 3 P.T.O.

[7]

them.

- 7. (a) Derive the condition of symmetry and reciprocity for Z-parameters. [6]
 - (b) Find the Z-parameters and verify reciprocity and symmetry conditions. [7]

- 8. (a) Derive the condition of symmetry and reciprocity for Y-parameters. [6]
 - (b) Define the terms poles and zeros for Network function. And explain network stability with the help of pole zero plot. [7]