\square

Instructions to the candidates:

1) Answer any one Question out of Q1 or Q2, Q3 or Q4, Q5 or Q6.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume Suitable data, if necessary.

Q1) a) State the Maxwell's equation for static \& time varying EM fields satisfying different laws of Electromagnetics
b) Derive the expression for attenuation constant, phase constant, propagation constant for a good conductor.

> OR

Q2) a) Explain linear, circular and elliptical polarization.
b) In a non-magnetic medium with intrinsic impedance 99 ohms and $\mathrm{E}=4$ $\sin \left(2 \pi^{*} 10^{7} t-0.8 x\right) a_{z} \mathrm{v} / \mathrm{m}$. Find;
i) Time average power carried by wave
ii) The total power crossing $100 \mathrm{~cm}^{2}$ of plane $3 x+y=10$.

Q3) a) Explain in detail with neat sketches,
i) Ground wave propagation.
ii) Sky wave propagation
b) Calculate the skip distance for flat earth with MUF of 10mhz. If a wave is reflected from a height of 300 km where maximum value of refractive index is 0.8 Calculate the skip distance for flat earth with MUF of 10 MHz .if a wave is reflected from a height of 300 km where maximum value of refractive index is 0.8 .

OR

Q4) a) Explain in detail the characteristics of the different ionized regions of ionosphere.
b) Explain the effect of earth's magnetic field on Ionospheric propagation.

Q5) a) Define \& explain following Antenna parameters
i) Antenna Aperture
ii) Effective Length
iii) Efficiency of antenna
b) An antenna has loss resistance 10 ohms, power gain of 20 and directivity 22. Calculate its radiation resistance.

OR
Q6) a) Define \& explain following Antenna parameters
i) Directivity
ii) Radiation Resistance
iii) Directive Gain
b) The radiation intensity of an antenna is given by
$U(\theta, \Phi)=(\cos \theta)^{4}(\operatorname{Sin} 2 \Phi)^{2}$ for $0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq \Phi \leq 2 \pi$
(i.e. upper half space only). Find power radiated and directivity.

