Total No. of Questions:	6]
P4915	

SEAT No. :
[Total No. of Pages : 2

T.E./Insem. - 129

T.E. (E & TC)

ELECTROMAGNETICS AND TRANSMISSION LINES (2012 Pattern) (Semester - I)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) State Coulomb's law and derive an expression for electric field intensity(E) due to uniformly charged sheet.
 - b) An electric dipole located at the origin in free space has moment

$$\overline{p} = 3\overline{a}_x - 2\overline{a}_y + \overline{a}_z nc_m$$

- i) Find V at $P_{A}(2, 3, 4)$
- ii) Find V at r = 2.5m, $\theta = 30^{\circ}$, $\phi = 40^{\circ}$. [4]

OR

- **Q2)** a) State and prove Divergence theorem.
 - b) State and prove Gauss law.
- Q3) a) Derive current continuity equation in differential form. [4]
 - b) A metallic sphere of radius 10 cm has surface charge density of 10 nc/m². Calculate electric energy stored in the system. [6]

OR

- **Q4)** a) Derive an expression for capacitance of parallel plate capacitor. [5]
 - b) Derive the boundary condition for electric field at an interface between conductor and free space. [5]

P.T.O.

[5]

[5]

- **Q5)** a) Using Ampere's circuital law find magnetic field intensity (\overline{H}) due to an infinite long straight current carrying conductor. [5]
 - b) Find the components of the magnetic field (Hz) which traversed from medium 1 to 2, Z=0 plane is the interface having $\mu_{r1}=2.5$ & $\mu_{r2}=4$.

Given that
$$\overline{H} = -30\overline{a}_x + 50\overline{a}_y + 70\overline{a}_z \text{ V/m}$$
. [5]

OR

- Q6) a) Derive the boundary condition at an interface between two magnetic medium.[5]
 - b) State and explain the scalar and Vector magnetic potentials. [5]

Insem. - 129