Total No. of Questions: 6]		SEAT No. :
P5026		[Total No. of Pages : 2
	T.E. / Insem	- 524
	T.E. (E&Tc) (Set	nester - I)
ELE	ECTROMAGNETICS AND	TRANSMISSION LINES
	(2012 Patt	ern)
Time: 1	Hour]	[Max. Marks:30
Instructi	tions to the candidates: 1) Answer Q.1, or Q.2, Q.3 or Q.4, 2) Neat diagram must be drawn w 3) Figures to the right side indicated 4) Assume suitable data if necessory	vherever necessary. te full Marks.
Q1) a)	State and prove the Gauss law. [5]	
b)	Find the electric flux density \overline{D} at (located at the origin in the cartesian	3, 4, 5) if a point charge Q = 15nC is a co-ordinate system. [5]
)R
Q2) a)	Derive the expression for electire f with uniform sheet charge ' ρ_s '.	ield intensity \overline{E} due to infinite sheet [5]
b)	Define and explain divergence of el Divergence in all co-ordinate system	ectric flux density. Write equation for ms. [5]
Q3) a)	Derive the electrostatic boundary conbetween dielectric and conductor.	ndition for electric field at an interface [6]

Derive an expression for capacitance of parallel plate capacitor.

OR

b)

b) The region y < 0 contains material for which $\in_{r_1} = 2.5$ while the region y > 0 is characterised by $\in_{r_2} = 4$. if $\overline{E}_1 = -20 \hat{a}_x + 40 \hat{a}_y + 80 \hat{a}_z$ V/m. Find

i) E_{N1} ii) $\overline{E_{T1}}$ iii) E_1 iv) θ_1 [5]

P.T.O

[4]

- **Q5)** a) Write Maxwell's equations for static fields in point. [5]
 - b) State and prove Biot Savart's law of magneto Statics. [5]

OR

- **Q6)** a) Derive the boundary condition at an interface between two magnetic medium. [5]
 - b) Find the magnetic field intensity due to a thin long conductor carrying current of one ampere at a distance of 1 cm from the conductor. [5]