Total No. of Questions :6]

P5635

TE/INSEM./OCT.-23

T.E. (**E & TC**)

ELECTROMAGNETICS & TRANSMISSION LINES (2012 Pattern) (Semester - I)

Time : 1 Hour]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Assume suitable data, if necessary.
- 3) Use of log table, electronic pocket calculator is allowed.
- 4) Neat diagram must be drawn wherever necessary.
- *Q1*) a) Derive an expression for electric field intensity due to electric dipole.[6]
 - b) Charge Q_2 of 10µc is located at P_2 (-3, 1, 4)m. Find the force on Q_2 due to $Q_1 = 33\mu c$ located at P_1 (3, 8, -2)m [4] OR
- Q2) a) Derive an expression for electric field intensity due to uniformly charged infinite sheet using Gauss Law. [5]
 - b) An infinite line charge having density 25nc/m is placed on y axis. Find electric field intensity at P (-1, -2, -3). [5]
- Q3) a) Derive boundary condition between conductor & free space. [5]
 - b) Define conduction current density and derive current continuity equation. [5]

OR

- Q4) a) Derive expression for capacitance of cylindrical plate capacitance. [5]
 - b) Determine whether or not following potential fields satisfy Laplace's equation.

i)
$$V = x^2 - y^2 + z^2$$

ii)
$$V = r \cos \phi + z$$

P.T.O.

[5]

www.manaresults.co.in

[Max. Marks :30

[Total No. of Pages :2

SEAT No. :

Q 5) a)	State and explain Biot & Savart Law	[4]
b)	Explain scalar & vector magnetic potentials. OR	[6]
Q6) a)	Derive the expression for magnetic field intensity due to infinite current carrying conductor using Ampere's Law.	e long [5]
b)	Plane $z = 0$ & $z = 4$ carry current $K = -10 \ \overline{a}_x$ A/m and $K = 10 \ \overline{a}$ respectively Determine \overline{H} at point i) P(1, 1, 1)	x A/m
	ii) Q (0, -3, 10)	[5]

X X X X

www.manaresults.co.in