Total No.	of Questions	:	8]
-----------	--------------	---	----

		_		_
D	1	7	1	7
		7		7

SEAT No.:			
[Total	No. of Pages	:	3

[4858] - 1043

T.E. (Electronics & Telecommunication) (End Semester) ELECTROMAGNETICS AND TRANSMISSION LINES (Semester - I) (2012 Pattern)

Time: 3 Hours] [Max. Marks: 70

- Q1) a) Derive the expression for electric field intensity \overline{E} at a point 'P' due to infinite sheet charge with charge density ' ρ_s '. [6]
 - b) Derive the expression for the capacitance of spherical plate capacitor. [6]
 - c) A current sheet $\overline{K} = 9\hat{a}y$ A/M is located at Z = 0. The region 1 which is at Z < 0 has $\mu r_1 = 4$ and region 2 which is at Z > 0 has $\mu r_2 = 3$ [8]

Given: $\overline{H}_2 = 14.5\overline{a}_x + 8\hat{a}z \text{ A/M}$

Find \overline{H}_1

OR

- Q2) a) Derive the expression for the capacitance of parallel plate capacitor. [6]
 - b) Derive expression for Biot & savart law using magnetic vector potential.[6]
 - c) $\overline{D} = \frac{5x^3}{2} \hat{a}x \frac{c}{m^2}$ prove divergence theorem for a valume of cube of side 1m. Centened at origin & edges parallel to the axis. [8]
- **Q3)** a) Select values of K such that each of the following pairs of fields satisfies maxwells's equation

i)
$$\overline{E} = (K_x - 100t) \, \overline{a}b_y \, v / m$$

 $\overline{H} = (x + 20t) \, \overline{a}_z \, A / m$
 $\mu = 0.25 \, H / m \in = 0.01 \, F / m$ [8]

P.T.O.

ii)
$$\bar{D} = 5x\bar{a}x - 2y\bar{a}y + kz\bar{a}z\mu c/m^2$$

 $\bar{B} = 2\bar{a}_y mT$
 $\mu = \mu_0 \in = \in_0$

b) Define displacement current and displacement current density & hence show that [8]

$$\nabla \times H = Jc + Jd$$

Where $JC \rightarrow$ conduction current density

Jd → displacement current density

OR

- **Q4)** a) Derive maxwell's equations in differential and integral form for time varying and free space. [8]
 - b) What is mean by uniform plane wave? obtain the wave equation travelling in free space in terms of E [8]
- **Q5)** a) Explain the phenomenon of reflection of transmission line and hence define reflection coefficient. [6]
 - b) A transmission line cable has the following primary constants. [10]

$$R = 11\Omega / \text{ km}$$
 $G = 0.8 \ \mu \, mho / km$
 $L = 0.00367 \, H / km \ C = 8.35 \, nF / km$

At a signal of 1 KHz calculate

- i) Characteristic impedance Zo
- ii) Attenuation constant (α) in Np / km
- iii) Phase constant (β) in radians /km
- iv) Wavelength (λ) in km
- v) Velocity of signal in km/sec

OR

- Q6) a) A cable has an attenuation of 3.5 dB/km and a phase constant of 0.28 rad/km. If 3V is applied to the sending end then what will be the voltage at point 10km down the line when line is terminated with Zo
 [8]
 - b) Derive the expression for characteristic impedance (Zo) and propagation constant (r) in terms of primary constants of transmission line. [8]

- **Q7)** a) Derive the expression for input impedance of a transmission line. Hence state the effect of open circuit & short circuit of line or input impedance. [9]
 - b) Explain standing wave and why they generate? Derive the relation between the SWR and magnitude of reflection coefficient. [9]

OR

- Q8) a) What is impedance matching? Explain necessity of it, What is stub matching?Explain the single stub matching with its merits & demerits.[8]
 - b) The VSWR on a lossless line is found to be '5' and successive voltage minima are 40 cm apart. The first voltage minima is observed to be 15cm from load. The length of a line is 160 cm and characteristic impedance is 300Ω . Using smith chart find load impedance sending end impedance.

[10]

