Total No. of	Questions: 8]
--------------	---------------

P2431

SEAT No.:	
-----------	--

[Total No. of Pages : 3

[5253]-154

T.E. (E & TC)

ELECTROMAGNETICS AND TRANSMISSION LINE (2012 Pattern)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) Using Gauss's law, derive an expression for electric field intensity (\overline{E}) , due to infinite line charge with uniform line charge density ρ_L , placed along entire z-axis. [7]
 - b) Two homogeneous isotropic dielectrics meet on plane z = 0 for z > 0, $E_{r_1} = 4$ and for z < 0, $E_{r_2} = 3$. A uniform electric field $\overline{E}_1 = 5\overline{a}x 2\overline{a}y + 3\overline{a}z$ kv/m exists for $z \ge 0$, find:
 - i) \overline{E}_2 for ≤ 0
 - ii) The angle between $\overline{\mathbf{E}}_2$ and interface
 - iii) The energy density in $z \ge 0$
 - Using Biot-Savart Law, find magnetic field intensity (\overline{H}) , due to infinitely long straight filament carrying current 'I' amperes. [7]

OR

Q2) a) A point charge of 16nc is located at Q(2, 3, 5) in free space and a uniform line charge of 5nc/m is at the intersection of the planes x = 2 and y = 4. If the potential at the origin is 100v, find potential (v) at point p(4, 1, 3).

P.T.O.

b) Derive an expression for capacitance of a parallel plate capacitor. [5]	b)	Derive an exp	oression for ca	apacitance of a	parallel plate c	apacitor.	[5]	ı
--	----	---------------	-----------------	-----------------	------------------	-----------	-----	---

c) Derive point form of Amperis Circuital Law.
$$(\nabla \times \overline{H} = \overline{J})$$
 [8]

- Q3) a) State and prove Poynting theorem and explain the significance of each term.
 - b) State the Maxwell's equation in point form for static electric and steady magnetic fields. Explain how these are modified for time varying fields. [10]

OR

- **Q4)** a) What are uniform plane waves? Derive an expression for Helmholtz wave equation. [10]
 - b) In a medium characterized by $\sigma = 0, \ \mu = \mu_0 \in = \in_0 \text{ and } \overline{E} = 20 \ \sin(10^8 \text{ t} \beta \text{z}) \overline{a} y \text{ v/m}.$ [8] Calculate β and \overline{H} .
- Q5) a) What do you mean by distortion less line? Derive the expression for characteristic impedance and propagation constant for distortion less line.[8]
 - b) State primary and secondary constants of a transmission line and hence derive relationship between primary and secondary constants of transmission line. [8]

OR

Q6) a) A transmission line has the following primary constants. [10]

 $R = 11 \Omega/km$

L = 0.00367 H/km

 $G = 0.8 \, \mu \, 75 \, \text{km}$

C = 8.35 nF/km

At a signal of 1 KHz calculate:

- i) Zo
- ii) Attenuation constant in Np/km
- iii) Phase constant in rad/km
- iv) Wavelength
- v) Velocity
- b) Explain the concept of reflection on transmission line and hence define reflection coefficient. [6]
- Q7) a) What are standing waves? Derive the relation between the SWR and magnitude of reflection coefficient.[8]
 - b) A Lossless transmission line with characteristic impedance of 50Ω is 30m long and operates at 2 MHz frequency. The line is terminated with a load of $(60 + j \ 40)$. If phase velocity is 0.6c, where 'c' is speed of light, then find using SMITH CHART:
 - i) Reflection coefficient (\(\Gamma\))
 - ii) VSWR
 - iii) Input Impedance (Zin)

OR

- **Q8)** a) Derive an expression for voltage and current on dissipation less line. [8]
 - b) What is impedance matching? Explain necessity of it. What is stub matching? Explain stub matching with its merits and demerits. [8]

