Total No. of Questions :8]	SEAT No.:
P1478	[Total No. of Pages :2
[54	160] - 154
T.E	. (E & Tc)

ELECTROMAGNETICS AND TRANSMISSION LINES

	(2012 Course) (Semester - I) (End Semester) (304184)	
Time: 2	[Max. Mar	ks :70
Instructi	ions to the candidates:	
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	
<i>2</i>)	Neat diagrams must be drawn wherever necessary.	
3)	Figures to the right side indicate full marks.	
<i>4</i>)	Use of Calculator is allowed.	
5)	Assume Suitable data if necessary.	
Q1) a)	Derive the expression of electric field intensity \overrightarrow{E} due to charged cirring.	rculaı
b)	A linear homogeneous, isotropic dielectric material has ε_r =3.6 covering the space between z = 0 and z = 1. If V = -6000 z volts is material, find	
	i) Ē	
	ii) \vec{P}	
	iii) ρ_s	
c)	State any two properties of curl and explain physical significan curl.	ce of [6]
	OR	
Q2) a)	Obtain \overrightarrow{D} due to point charge Q placed at origin. Hence obtain rel	lation
	between \overrightarrow{D} and \overrightarrow{E} .	[8]
b)	Derive the boundary conditions between two perfect dielectrics.	[6]
c)	Derive \vec{H} due to infinitely long straight conductor.	[6]

P.T.O.

- Q3) a) What is poynting vector? What is its significance? Derive the equation for average poynting vector.[8]
 - b) In a material for which $\sigma = 5.0$ S/m and $\epsilon_r = 1$, the electric field intensity is $E = 250 \sin 10^{10} t$ V/m. Find the conduction and displacement current densities and frequency at which both have equal magnitude. [8]

OR

- **Q4**) a) Write and explain Maxwell's equations for static and time varying field.
 - b) What is uniform plane wave? Derive an expression for Helmholtz wave equation. [8]
- Q5) a) Derive the relationship between primary and secondary constant. [8]
 - b) For an open wire overhead line β = 0.04 rad/km. Find the wavelength and velocity at frequency of 1600 Hz. Hence calculate the time taken by the wave to travel 90 km. [8]

OR

- Q6) a) Derive the expression for characteristics impedance and propagation constant in terms of primary constant of transmission line.[8]
 - b) If attenuation constant is 18×10^{-3} N/m. Velocity of propagation is 1.8×10^{8} m/s and characteristics impedance is 60Ω . Find out the primary line constant of such distortionless line at frequency of 100 MHz. [8]
- Q7) a) Define standing wave ratio. Derive relation between standing wave ratio and magnitude of reflection coefficient.[8]
 - b) Derive the expression for input impedance for eight wave line and quarter wave line. [10]

OR

- **Q8)** a) What do you mean by single stub matching? Derive the equation of single stub along the line. [8]
 - b) A transmission line of 100 m long is terminated in load of $(100 j\ 200)$ Ω . Determine the line impedance at 25 m from the load end at a frequency of 10 MHz. Assume line impedance $Z_0 = 100\ \Omega$. Determine the input impedance and admittance using smith chart. [10]

[5460]-154