ELECTROMAGNETICS AND TRANSMISSION LINES (2012 Course) (Semester - I) (End Semester) (304184)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks :70
Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of Calculator is allowed.
5) Assume Suitable data if necessary.

Q1) a) Derive the expression of electric field intensity $\overrightarrow{\mathrm{E}}$ due to charged circular ring.
b) A linear homogeneous, isotropic dielectric material has $\varepsilon_{r}=3.6$ and covering the space between $\mathrm{z}=0$ and $\mathrm{z}=1$. If $\mathrm{V}=-6000 \mathrm{z}$ volts in the material, find
i) $\overrightarrow{\mathrm{E}}$
ii) $\overrightarrow{\mathrm{P}}$
iii) ρ_{s}
c) State any two properties of curl and explain physical significance of curl.

Q2) a) Obtain \vec{D} due to point charge Q placed at origin. Hence obtain relation between \vec{D} and \vec{E}.
b) Derive the boundary conditions between two perfect dielectrics.
c) Derive $\overrightarrow{\mathrm{H}}$ due to infinitely long straight conductor.

Q3) a) What is poynting vector? What is its significance? Derive the equation for average poynting vector.
b) In a material for which $\sigma=5.0 \mathrm{~S} / \mathrm{m}$ and $\varepsilon_{\mathrm{r}}=1$, the electric field intensity is $\mathrm{E}=250 \sin 10^{10} \mathrm{t} / \mathrm{m}$. Find the conduction and displacement current densities and frequency at which both have equal magnitude.

OR

Q4) a) Write and explain Maxwell's equations for static and time varying field.
b) What is uniform plane wave? Derive an expression for Helmholtz wave equation.

Q5) a) Derive the relationship between primary and secondary constant.
b) For an open wire overhead line $\beta=0.04 \mathrm{rad} / \mathrm{km}$. Find the wavelength and velocity at frequency of 1600 Hz . Hence calculate the time taken by the wave to travel 90 km .

OR

Q6) a) Derive the expression for characteristics impedance and propagation constant in terms of primary constant of transmission line.
b) If attenuation constant is $18 \times 10^{-3} \mathrm{~N} / \mathrm{m}$. Velocity of propagation is $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and characteristics impedance is 60Ω. Find out the primary line constant of such distortionless line at frequency of 100 MHz .

Q7) a) Define standing wave ratio. Derive relation between standing wave ratio and magnitude of reflection coefficient.
b) Derive the expression for input impedance for eight wave line and quarter wave line.

OR

Q8) a) What do you mean by single stub matching? Derive the equation of single stub along the line.
b) A transmission line of 100 m long is terminated in load of ($100-\mathrm{j} 200$)
Ω. Determine the line impedance at 25 m from the load end at a frequency of 10 MHz . Assume line impedance $\mathrm{Z}_{0}=100 \Omega$. Determine the input impedance and admittance using smith chart.
[10]

