Total No. of Questions: 8]		SEAT No. :	
P3045	[5154] 612	[Total No. of Pa	nges : 3

[5154]-613 B.E.(E&TC)

MICROWAVE ENGINEERING

(2012 Pattern) (Semester-I) (End Semester)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume suitable data, if necessary.
- **Q1)** a) Why waveguides are required at microwave frequencies? Explain the following parameters of a waveguide. [7]
 - i) Phase Velocity
 - ii) Guide wavelength
 - iii) Cut off frequency
 - b) Explain the Faraday's rotation principle? Explain in brief the working principle of an isolator. [7]
 - c) Explain the properties of E plane Tee with the help of a neat diagram. Also state its Scattering matrix. [6]

OR

- **Q2)** a) An air-filled rectangular waveguided of inside dimensions 7×3.5 cm operates in the dominant TE mode. [7]
 - i) Find the cut off frequency
 - ii) Determine the phase velocity of the wave in the guide at frequency of 3.5 GHz.
 - iii) Determine the guided wavelength at the same frequency.
 - b) Define with expressions the following parameters of directional coupler.[7]
 - i) Coupling Factor
 - ii) Directivity
 - iii) Insertion loss
 - iv) Isolation
 - c) When is it necessary to carry out Microwave Network Analysis? [6]

P.T.O.

- Q3) a) What are the high frequency limitations of transistor? Explain the techniques to minimize this along with the performance parameters of transistor at high frequency.[9]
 - b) Explain in detail the construction, operation, advantages and applications of a TWT amplifier. [9]

OR

Q4) a) A two cavity Klystron amplifier has the following specifications: [10]

Beam Voltage: $V_0=1000V$ Beam Current: $I_0=25mA$ Frequency: f=3 GHz

Gap spacing in either cavity: d=1 mm

Spacing between centers of cavities: L=4 cm

Effective shunt impedance excluding beam loading: R_{ch} : $30k\Omega$

Determine:

- i) The input gap voltage to give maximum output voltage V2
- ii) Find voltage gain, neglecting the beam loading in the output cavity.
- iii) Find the efficiency of the amplifier, neglecting beam loading.
- b) What are cross field devices? Explain the Cavity Magnetron with Hull cut off condition in detail. [8]
- Q5) a) Explain the working principle, advantages and disadvantages of Tunnel Diode in detail.[8]
 - b) Draw equivalent circuit of Varactor diode. Explain in detail its construction and operation. [8]

OR

- **Q6)** a) Explain construction, working and applications of PIN diode in detail. [8]
 - b) Write a short note on:

[8]

- i) Microwave Transistor
- ii) Schottky Barrier diode.

[5154]-613

Q7) a) Explain attenuation measurement technique in detail.

[8]

b) Enlist methods of measuring the Q of a cavity resonator. Explain any one method in detail. [8]

OR

Q8) a) Write short note on:

[8]

- i) Tunable detector
- ii) Microwave Power Measurement
- b) Explain any two methods of measuring Impedance of a terminating load in a microwave system. [8]

 \odot \odot