| Total No. of Questions: 8] | SEAT No.: | |----------------------------|-------------------------| | P3653 | [Total No. of Pages : 2 | [4859]-1036 | B.E. (E & T/C) | | | | | | |------------------------------------|-------------------------------|--|---------------------|--|--| | VLSI DESIGN & TECHNOLOGY | | | | | | | | (2012 Pattern) (Semester - I) | | | | | | Time | 2:21/2 | [Max. Marks: | 70 | | | | Instr | uctio | ons to the candidates: | | | | | | 1) | Answer any one question out of Q.No.1 or 2, Q.No.3 or 4, Q.No. 5 or 6, Q.No. or 8. | 0.7 | | | | | <i>2</i>) | Neat diagrams should be drawn wherever necessary. | | | | | | <i>3</i>) | Use of electronic pocket calculator is allowed. | | | | | | <i>4</i>) | Assume suitable data, if necessary. | | | | | Q 1) | a) | Write VHDL code for 8 bit serial in serial out shift register by structus & behavioural modeling methods. | ra]
[7] | | | | | b) | What is need of FPGA? List typical specifications of FPGA. | [7] | | | | | c) | Explain I/O architecture in detail. | [6] | | | | | ŕ | OR | | | | | Q 2) | a) | What are flip flop timings? What is meta-stability? What are solutions | s?
[7] | | | | | b) | Explore the architecture of CPLD in detail. | [7] | | | | | c) | What are different wire parasitics? How do they play important role routing? | ir
[6] | | | | Q 3) | a) | Derive the expressions for power dissipations in CMOS. What are t techniques to minimize the dissipations? | he
[9] | | | | | b) | Design CMOS logic for Y = AB + CDEFG+H. Compute area on chip. | [9] | | | | | | OR | | | | | Q4) | a) | What is power delay product? Derive the expression for it. What is significance? | its
[9] | | | | | b) | Explain linear delay model in detail. | [9] | | | *P.T.O.* | Q5) | a) | Compare push-pull, current source & active load inverters with respect | ect | |-------------|----|--|------------| | | | to voltage gain, voltage range, output resistance & bandwidth in detail. | [8] | | | b) | Draw the schematic of CMOS differential amplifier and give t | he | | | | expressions for voltage gain, output resistance. CMRR & ICMR. [| 8] | | | | OR | | | Q6) | a) | Draw common drain amplifier. Compare with common source | & | | | | common gate amplifiers with respect to gain, output resistance | & | | | | bandwidth. | 8] | | | b) | Draw & explain CMOS operational amplifier. Give the expressions f | or | | | | voltage gain & output resistance. | [8] | | Q7) | a) | What is need of DFT? Explain with suitable example. | 8] | | ~ . | b) | Explain fault models in detail. | 8] | | | | OR | _ | | Q 8) | a) | With the interface ports involved, explain JTAG in detail. | 8] | | | b) | What is partial & full scan path? | 8] |