Total No	of Questions	: 10]
-----------------	--------------	-------

[Total No. of Pages: 3

P3969

[5070]-2004 M.B.A.

204: DECISION SCIENCE (2013 Pattern) (Semester - II)

Time: 2½ Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt 5 (five) questions.
- 2) Each question has an internal option.
- 3) Each question carries equal marks.(10)
- 4) Figures to the right indicate mark for questions.
- 5) Graph will not be provided, Draw a diagram on answer sheet.
- 6) Non scientific calculator is allowed.
- Q1) Find the initial basic feasible solution of the following transportation problem for minimizing using Vogel's Approximation method. The table below. [10]

	D1	D2	D3	D4	Supply	
01	10	20	5	7	10	
02	13	9	12	8	20	
03	4	15	7	9	30	
04	14	7	1	0	40	
05	3	12	5	19	50	
Demand	60	60	20	10		

OR

Q2) Solve the following L.P.P. using graphical method:

[10]

Minimize
$$Z=80 x + 120y$$

Subject to
$$x+y < 9$$

$$x \ge 2$$

$$y \ge 3$$

$$20x+50y \le 300$$

$$x, y \ge 0$$

P.T.O.

- Q3) A self service store employs one cashier at its counter. Nine customers arrive on as average 5 minutes while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential distribution for service rate find: [10]
 - a) Find the traffic intensity.
 - b) Average number of customers in the system.
 - c) Average number of customers in queue or average queue length.
 - d) Average time a customer spends in the system.
 - e) Average time a customer waits before being served.

OR

Q4) a) In a cricket season for a one-day match a bowler bowled 50 balls. The frequency distribution of runs scored per ball is as given below: [5]

Runs/ball	0	1	2	3	4	5	6
Number of balls	15	10	10	4	8	1	2

Simulate the system for 2 over's and find average runs given in 2 over's by him. Use the following random numbers: 88,03,05,29,28,48,65,19,55,17,37,82.

b) Write a note on Markov Chain.

[5]

Q5) Solve the following Game, Given the Pay-off matrix as:

[10]

Player B

| B1 | B2 |
| Player A | A1 | 6 | -3 |
| A2 | -3 | 0

OR

Q6) A businessman has 3 alternative actions that he can take. Each of these follows 4 possible events. The conditional Payoffs for each action event combination are as under.

	Events						
Actions	A	В	С	D			
I	4	0	-5	3			
II	-2	6	9	1			
III	7	3	2	4			

[5070]-2004

Find optimal decision under

[10]

- a) Maximin Criterion.
- b) Minimax Regret Criterion.
- c) Laplace Criterion.
- **Q7)** A project has been defined to contain the following list of activities along with their required time of completion.

Activity	A	В	С	D	Е	F	G	Н	I
Time in Days	1	4	3	7	6	2	7	9	4
Immediate									
Predecessor	-	A	A	A	В	С	E,F	D	G,H

- a) Draw the Network Diagram.
- b) Find early start time(EST) and early finish time (EFT).
- c) Identify Critical path.

[10]

OR

- **Q8)** Write short notes on:
 - a) Role of Network techniques in project management.

[5]

b) Floats and its types with example.

[5]

- **Q9)** The incidence of a certain disease is such that on an average 20% of workers suffer from it. If 10 workers are selected at random, find the probability that
 - a) Exactly 2 workers suffer from the disease.

[10]

- b) Not more than 2 workers suffer from the disease.
- c) At least 9 workers suffer from the disease.

OR

- **Q10)**a) A card is drawn at random from a well shuffled pack. Find the probability that [5]
 - i) It is not a spade.
 - ii) It is a face card.
 - b) A pair of dice is thrown. Find the probability of getting the sum [5]
 - i) More than nine.
 - ii) Multiple of 3.

 $\Rightarrow \Rightarrow \Rightarrow$