[5365]-2004
 M.B.A.
 204: DECISION SCIENCE (2016 Pattern) (Semester-II)

Time : $2^{1 ⁄ 2} / 4$ Hours]
[Max. Marks : 50
Instructions to the candidates:

1) Each question carry equal marks.
2) Each question has an internal option.
3) Graph paper will not be provided.
4) Non-Scientific calculator is allowed.

Q1) a) A computer center has four expert programmers. The center needs. four application programs to be developed. The head of computer center after carefully studying, estimates. The time required (in minutes) by the expert to develop the application programm. Find the assignment schedule so that time will be minimized.

A		B C Programes		
1	120	100	80	90
边2	80	90	110	70
兇3	110	140	120	100
4	90) 90	80	90

a) Discuss the role of quantitative techniques in decision making. Give an example.
b) Find the initial feasible solution using North-West corner method for the given matrix.

Store

	A	B	C	D	Supply
I	10	20	5	7	10
O II	13	9	12	8	20
O					
O. III	4	15	7	9	30
IV	14	7	1	0	40
V	3	12	5	19	50
Demand	60	60	20	10	150

Q2) Solve the following LPP graphically to maximize $\mathrm{Z}=3 x+4 y$, subject to,
$x+y \leq 6$, and $2 x+y \leq 8$, where $x \geq 0, y \geq 0$.
OR?
The rainfall distribution of monsoon season is as follows.

Rainfall(in cm)	0	1	2	3	4	5
Frequency	50	25	15	5	3	2

Using the following random number-67,63,39,55,29,78,70,6,78, and 76, simulate the rainfall fornext 10 days and find the average rainfall.

Q3) A businessman has three alternative actions that he can take. Each of the action can be followed by any of the four posible events. The conditional payoff for each action-event combination are as under.

\checkmark	Nature			
\cdots	N1	N2	N3	N4
S1	4	0		
. ${ }^{\circ} 2$	-2	6		1
- ${ }^{\text {S }}$	7	3	,	

Find the optimal strategy using
a) Maxmini criteria
b) Laplace criteria and
c) Hurwicz criteria $(\alpha=0.6)$

OR

In a service department manned by one server, on an average one customer arrives every 10 minutes. It has been found that each customerrequires 6 minutes to be served find out.
a) Probability that the server is idle.
b) Average queue length.
c) Average time spent by each. Customer in the system.
d) Probability that there would be 2 customers in the queue.

Q4) Following information is gathered for a project.

Activity	Preceding activity	Duration(weeks)
A	A	1
B	A	3
C	A	4
D	D	3
E	D	2
F	H	4
G	F,G,I	9
H	D	5
I		2
J		2

a) Draw network diagram.
b) Determine critical path and its duration.

> OR

We have seven jobs, each of which has to go through two machines A\&B in the order AB . The processing time for the jobs on the two machines (in hrs) are given as,

Job	1	$)^{2}$	3	4	5	6	7
Machine A	3	12	15	6	10	$11 y$	9
Machine B	8	10	10	6	12	1	3

Determine the sequence of these jobs to minimized total elapsed time.T. [10]

Q5) A card is drawn froma pack of cards. What is the chance of drawing a red queen given that the card drawn was a face card.

In a sample of 1000 scores, the mean of a certain test is 14 and the standard deviation is 2.5 . Assuming the distribution to be normal, find.
a) How many students have scored between 12 and 15 ?
b) How many scored above 18 ?
(Given Z at $0.8=0.2881$

$$
\begin{aligned}
& \mathrm{Z} \text { at } 0.4=0.1554 \\
& \mathrm{Z} \text { at } 1.6=0.4452)
\end{aligned}
$$

$\rightarrow \rightarrow+$

