Seat	
No.	

[5152]-138

S.E. (E&TC/Elections) (Second Semester) EXAMINATION, 2017 ANALOG COMMUNICATION

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) State and compare different SSB generation methods. [6]
 - (b) Consider an angle modulated signal.

x (t) = 10 cos $(\omega ct + 3 \sin \omega mt)$ assume PM and f_m = 1KHz. Calculate the modulation index and find the bandwidth when :

- (i) Fm is doubled
- (ii) Fm is decreased by one half

[6]

Or

- **2.** (a) An audio frequency signal 10 sin $(2\pi \times 500t)$ is used to amplitude modulate a carrier of 50 sin $(2\pi \times 10^5)$. Calculate:
 - (i) Modulation index
 - (ii) Sideband frequencies

P.T.O.

		(iv) Bandwidth	
		(v) Total power delivered to load of 600Ω	
		(vi) Transmission efficiency	[6]
	(<i>b</i>)	Explain Armstrong method of FM generation.	[6]
3.	(a)	Explain the following:	
		(i) Double spotting	
		(ii) Image frequency rejection	
		(iii) Fidelity [[6]
	(<i>b</i>)	Three resistors have values $R1$ = 10 $K\Omega$, $R2$ = 14 $K\Omega$ and	nd
		$R3 = 24 \text{ K}\Omega$. It is known that thermal noise voltage generate	ed
		by R1 is 0.3 μv. Calculate thermal noise voltage generate	ed
		by:	
		(i) Three resistors connected in series	
		(ii) Three resistors connected in parallel.	[6]
		Or	
4.	(a)	Explain with waveform and block diagram AM superheterody	ne
		receiver.	[6]
	(<i>b</i>)	Derive Friss formula for noise factor of cascaded amplifie	er.
		[6]	
5.	(a)	Explain the performance of SSB-SC in presence of noise.[7]
[5152]]-138	2	

(iii) Amplitude of each sideband frequencies

	<i>(b)</i>	Explain importance of pre-emphasis and De-emphasis in	FM
		system.	[6]
		Or	
6.	(a)	Derive expression for signal to noise ratio in DSBSC system	.[6]
	(<i>b</i>)	Explain the performance of FM in presence of noise.	[7]
7.	(a)	State and prove sampling theorem with suitable waveform a	and
		mathematical expression.	[7]
	(<i>b</i>)	What is aliasing? How is it reduced?	[6]
		Or	
8.	(a)	Explain with the block diagram and waveform PAM.	[6]
	(<i>b</i>)	With the help of block diagram explain transmitter and recei	iver
		of PCM.	[7]