Total No. of Questions: 10]	SEAT No. :
P4088	[Total No. of Pages : 3

[5461]-501 B.E. (Civil)

ENVIRONMENTAL ENGINEERING - II (2015 Pattern)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8 and Q.9 or Q.10.
- 2) Figures to the right indicate full marks.
- 3) Draw neat figures wherever necessary.
- 4) Assume any missing data if necessary.
- 5) Use of scientific calculators is allowed.
- Q1) a) Write objective and methodology adopted for cleaning of rivers in National River Cleaning Plan.[5]
 - b) Draw a process flowchart for sewage treatment plant (STP) consisting primary and secondary treatment. [5]

OR

Q2) a) Determine treatability index of wastewater for given data and suggest type treatment with respect to treatability index. [5]Given data:

Sr.No.	BOD ₅ day (mg/L)	COD (mg/L)
1	155	297
2	95	297

- b) What is the sludge bulking? Explain the control measures for the same. [5]
- Q3) a) Differentiate conventional and high rate tricking filter. [5]
 - b) Write the different disposal methods of grit and explain any one method of disposal of grit. [2+3]

OR

- **Q4)** a) Write Streeter-Phelps equation and explain the meaning each term involved in it. [2+3]
 - b) Write working principle of rotating biological contractor, advantages and disadvantages. [1+2+2]

P.T.O.

Q5)	a)	Writ	te working principle of purification of wastewater treatment of ro	ot
		zone	e cleaning system; draw its schematic sketch and write its applicatio	n.
			[2+3+2	2]
	b)	Desi	gn an oxidation pond for following data. [8	8]
		i)	Location = 28° latitude	
		ii)	BOD loading at 28 latitude = 200 kg/ha/d .	
		iii)	Elevation = 1200 m above sea level.	
		iv)	Mean monthly temperature = 35°C maximum and 15°C minimum	n.
		v)	Sky clearance is more than 75%.	
		vi)	Population to be served = 25000.	
		vii)	Sewage flow= 1001pcd.	
		viii)	Inlet $BOD_5 = 200 \text{ mg/l}$	
		ix)	Desired effluent BOD =: 20 mg/l	
		x)	Pond removal constant at $20^{\circ}C = 0.1/d$.	
			OR	
Q6) a) Design		Desi	ign an aerated lagoon for following data. [8	8]
		i)	Raw sewage flow = 20 MLD	
		ii)	Raw sewage $BOD_5 = 200 \text{mg/l}$	
		iii)	Desired BOD ₅ =20mg/l	
		iv)	Kinetic constant : $Y = 0.6/d$ BOD removal rate constant (K_d)	at
			20C = 0.1/d	
		v)	Hydraulic retention time $(SRT) = 6$ days	
		vi)	Endogenous decay coefficient kd = 0.06	
		vii)	Mean cell residence time = 10 days	
		viii)	f = 0.68	

ix) Assume depth of aerated lagoon = 2m

x) Assume length to width ratio = 3

Determine,

- a) Volume and dimensions of aerated lagoon
- b) Oxygen requirement
- b) Write working principle of phytoremediation technology for wastewater treatment; draw its schematic sketch and write its application. [2+3+2]

Q7) a)		Write principle and stages of anaerobic digestion. Explain factors affecting digestion process. [2+2+3]	
	b)	Explain any two methods of sludge disposal with advantage disadvantages and application. [8]	
		OR	
Q8)	a)	Draw a neat sketch of up flow anaerobic sludge blanket (UASB) reacto Explain the principle of working and comment on its suitability for treatment of industrial waste water. [2+3+2]	or
	b)	Draw neat sketch of conventional sludge digester and explain the following:	
		i) Different stages of digestion process.	
		ii) Design parameters of anaerobic digester.	
		iii) Capacity of digester.	
Q9) a)	a)	Explain with neat sketch equalization and proportioning as applicable to Industrial Waste Treatment. [8]	
	b)	Explain the following points related to dairy industry. [6]	[[
		i) Characteristics of wastewater.	
		ii) Flow sheet of wastewater treatment.	
	c)	Enlist different units used in preliminary, primary and secondary treatment in industrial wastewater treatment. [2+2+2]	
		OR	
Q10)	a)	Explain with a neat sketch importance of neutralization as applicable to Industrial Wastewater Treatment. [8]	
	b)	What are the process carried out to recycle and reuse of treate	d

- b) What are the process carried out to recycle and reuse of treated wastewater. [6]
- c) Explain the following points related to sugar industry: [6]
 - i) Characteristics of wastewater.
 - ii) Flow sheet of wastewater treatment.
