

$$
\begin{array}{r}
\text { C09-A-102/C09-AA-102/C09-AEI-102/C09-C-102/ } \\
\text { C09-CM-102/C09-CH-102/C09-CHST-102/ } \\
\text { C09-EC-102/C09-EE-102/C09-FW-102/C09-IT-102/ } \\
\text { C09-M-102/C09-MET-102/C09-MNG-102/ } \\
\text { C09-PKG-102/C09-TT-102 }
\end{array}
$$

3002

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2018 DCME-FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. If

$$
x+\frac{1}{x}=7
$$

find the value of $x^{3}+\frac{1}{x^{3}}$.
2. Rationalize the denominator of

$$
\frac{\sqrt{13}-\sqrt{5}}{\sqrt{13}+\sqrt{5}}
$$

3. Resolve

$$
\frac{1}{(x-7)(x-3)}
$$

into partial fractions.
4. If $A+B+C=90^{\circ}$, prove that $\cot A+\cot B+\cot C=\cot A \cot B \cot C$.
5. Show that

$$
\frac{\cos 2 \theta}{1+\sin 2 \theta}=\tan \left(\frac{\pi}{4}-\theta\right)
$$

6. Find the modulus of

$$
\frac{3+4 i}{1-7 i}
$$

7. Find the equation of the straight line passing through the point $(3,-4)$ and perpendicular to the line $x+5 y-1=0$.
8. Find the equation of the point circle with centre $(5,-2)$.
9. Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sin 33 x}{\tan 11 x}
$$

10. Differentiate $x^{2} \sec 3 x$.

> PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Using Laplace's expansion evaluate

$$
\left|\begin{array}{lll}
p & q & r \\
r & p & q \\
q & r & p
\end{array}\right|
$$

(b) Find the adjoint of

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
-4 & 0 & 3 \\
3 & -1 & 7
\end{array}\right]
$$

12. (a) If $A+B+C=180^{\circ}$, show that

$$
\sin 2 A-\sin 2 B-\sin 2 C=-4 \sin A \cos B \cos C
$$

(b) Prove that

$$
\tan ^{-1} \frac{2}{3}+\cot ^{-1} \frac{4}{3}=\cot ^{-1} \frac{6}{17}
$$

13. (a) Solve :

$$
2 \cos ^{2} \theta=1-\sin \theta
$$

(b) In any $\triangle A B C$, show that

$$
\sum \cot A=\frac{R\left(a^{2}+b^{2}+c^{2}\right)}{a b c}
$$

14. (a) Find the vertex, focus and directrix of the parabola $(x+8)^{2}=24(y-31)$.
(b) Find the equation of the ellipse which passes through the points $(-2,1)$ and $(-1,3)$ with axes as coordinate axes.
15. (a) Find the equation of the rectangular hyperbola whose focus is $(5,-3)$ and directrix is $x+2 y+7=0$.
(b) Find the perimeter and centroid of the triangle formed by the points $(7,-4,7),(1,-6,10),(5,-1,1)$.
16. (a) Find

$$
\frac{d y}{d x}
$$

$$
\text { if } x=a(\theta-\sin \theta), y=a(1-\cos \theta)
$$

(b) If

$$
y=\sqrt{\sqrt{x}+\sqrt{\sqrt{x}+\sqrt{\sqrt{x}+\cdots \ldots \ldots \text { to } \infty}}}
$$

show that

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{x}(2 y-1)}
$$

17. (a) For any curve, show that

$$
\sqrt{\frac{\text { subtangent }}{\text { subnormal }}}=\frac{\text { length of tangent }}{\text { length of normal }}
$$

(b) Each side of a square increases at the rate of $1.3 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square increases when the side is 14 cm . Also find the rate at which perimeter increases.
18. (a) Find the dimensions of a rectangle of maximum area having a perimeter of 42 ft .
(b) If an error of 0.02 cm is made in measuring radius 10 cm of a sphere, find approximate percentage error in the surface area of the sphere.

