

C09-A/AA/AEI/C/CM/EC/EE/CH/CHST/FW/IT/M/MNG/MET/PKG/TT-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) OCTOBER/NOVEMBER-2018 FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time: 3 Hours] [Total Marks: 80

PART-A

3X10=30

Instructions:

- 1. Answer **All** questions.
- 2. Each question carries **Three** marks.
- 3. Answer should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Simply $4x [3y-2 \{3x-3(6y-2x)\}]$.
- 2. Express $x^2 + 7x + 12$ in the form X^2-A^2 .
- 3. Resolve $\frac{2x+3}{(x+1)(x-3)}$ into partial fractions.
- 4. If A+B = $\frac{\pi}{4}$, prove that (1-cotA) (1-cotB) = 2
- 5. Prove that $\frac{1-\cos 2\theta}{\sin 2\theta} = \tan \theta$.
- 6. Find the real and imaginary parts of $\frac{4+2i}{1-2i}$.
- 7. Find the distance between the parallel lines 3x-4y-8=0; 6x-8y+5=0.
- 8. Find the equation to the circle having the points (3m-4) and (-2,5) as the ends of a diameter.
- 9. Evaluate $Lt_{n\to\infty} \left(\frac{1^2+2^2+3^2+0....+n^2}{n^3} \right)$
- 10. Find the derivative of $(e^x + x^2 secx)$.

10X5=50

Instructions:

- 1. Answer any **Five** questions,
- 2. Each question carries ten marks.
- 3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer
- 11. (a) Prove that $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c).$
 - (b) Solve the following equations by matrix inversion method x+y+z=6; x-y+z=2; 2x+y-z=1.
- 12. (a) Prove that $\cos 20^{\circ}$. $\cos 30^{\circ}$. $\cos 40^{\circ}$. $\cos 80^{\circ} = \frac{\sqrt{3}}{16}$.
 - (b) If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$, prove that x+y+z = xyz.
- 13. (a) Solve $\sin\Theta + \cos\Theta = \sqrt{2}$.
 - (b) In any \triangle ABC, show that if a,b,c are in A P then Cot $\left(\frac{A}{2}\right)$, Cot $\left(\frac{B}{2}\right)$, Cot $\left(\frac{C}{2}\right)$ are also in A.P.
- 14. (a) Find the equation of the parabola whose focus is (2,-3), and whose directrix is 2x-3y+4=0.
 - (b) Find the eccentricity, foci, length of latusrectum of the ellipse $16x^2 + 9y^2 = 144$.
- 15. (a) Find the eccentricity of the hyperbola whose vertices are (2,3), (-2,3) and eccentricity 5/2.
 - (b) Show that the points (1,2,3) (7,0,1) and (-2, 3, 4) are collinear.
- 16. (a) If $x^y = e^{x-y}$ them prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$.
 - (b) If $u = x^2 + y^2 + z^2$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2u$.
- 17. (a) Find the equations of tangent and normal to the curve $y=x^2-3x+4$ at the point (0,4).
 - (b) A circular metal plate expands by heat so that its radius is increasing at the rate of 0.02 cm/sec. At what rate its area increasing when the radius is 20 cm?.
- 18. (a) The sum of two numbers is 24. Find them so that their product is to be maximum.
 - (b) If there is an error of 1% in measuring the side of a square plate, find the percentage error in its area.
