3016

BOARD DIPLOMA EXAMINATION, (C-09) OCTOBER/NOVEMBER-2018 DCE- FIRST YEAR EXAMINATION

ENGINEERING MECHANICS

PART-A

Instructions : 1. Answer All questions.
2. Each question carries Three marks.
3. Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms (a) Force (b) Scalar Quantity (c) Vector Quantity.
2. List any three properties of a couple.
3. Give the position of Centroid of the following sections.
i. Square
ii. Rhombus
iii. Semicircle
4. Write the formulae for radius of gyration of semi-circular section and hollow circular section.
5. A bar of $100 \mathrm{sq} . \mathrm{mm}$ in area is 2000 mm long. If a load of 75 kN is applied suddenly, what is the maximum instantaneous stress produced? Express its value in MPa.
6. A material has Young's modulus of $1.25 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ration of 0.25 . Calculate the modulus of rigidity and bulk modulus.
7. A steel rod 20 mm diameter and 2500 mm long is subjected to an axial pull of 50 KN . If E for steel is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, calculate the stress and elongation of the bar.
8. Define
i. Shear force
ii. Bending Moment
iii. Point of contra flexure
9. A simply supported beam of span 6 m carries a central point load of 20 kN in addition to the UDL of $5 \mathrm{kN} / \mathrm{m}$ over its entire span. Draw the SF diagram.
10. Draw the sketches of a cantilever beam of 4 m length with a central point load of 9 kN and UDL of $5 \mathrm{kN} / \mathrm{m}$ over its entire span. Draw the SF diagram.

PART-B

Instructions : 1. Answer any Five questions

2. Each question carries ten marks.
3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
4. (a) With the help of a sketch state the Lami's theorem.
(b) In a jib crane, the jib and the tie rod are 5 m and 4 m long respectively. The height of crane post is 3 m and the tie rod remains horizontal. Determine the forces produced in the jib and tie rod when a load of 2 KN is suspended at the crane head.

5. Find the position of centroid of a channel from base left edge.

6. (a) What do you mean by Polar moment of inertia of a section?
(b) Determine the moment of inertia of a semi-circular section of 100 mm diameter about its centroidal axes by using parallel axes theorem.
7. A steel bar 50 mm diameter is completely encased in a brass tube of 80 m outside diameter. The length of the composite bar is 400 mm . if this assembly is subjected to a compressive force of 80 kN , Determine.
i. Stresses in steel bar and brass tube
ii. Change in length of the assembly

Given E for steel $=208 \mathrm{kN} / \mathrm{mm}^{2}$ and E for brass $=104 \mathrm{kN} / \mathrm{mm}^{2}$. Also find the load shared by each material
15. The following data refer to a tensile test conducted on a mild steel bar.
i. Diameter of bar $=20 \mathrm{~mm}$
ii. Gauge length $=300 \mathrm{~mm}$
iii. Extension at a load of $30 \mathrm{kN}=0.1 \mathrm{~mm}$
iv. Yield point $=80 \mathrm{kN}$
v. Ultimate load $=130 \mathrm{kN}$
vi. Total extension $=50 \mathrm{~mm}$
vii. Diameter of the rod at failure $=14.1 \mathrm{~mm}$ Calculate
i. The Young's modulus
ii. Yield stress
iii. Ultimate stress
iv. Percentage of elongation
v. Percentage of reduction in area
16. A cantilever 6 m long subjected to a UDL of $3 \mathrm{kN} / \mathrm{m}$ over a length of 2 m form the free end and another UDL of $2 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from fixed end. Draw the S.F and B.M diagrams.
17. Write the relationship between the rate of loading, shear force and Bending Moment giving a neat sketch
18. (a) Determine the position of centroid of a T-section of flange 120×120 and web 160×20.
(b) find the moment of inertia of a T-Section having flange and web both $120 \mathrm{~mm} \times 30 \mathrm{~mm}$ about its centroidal $\mathrm{y}-\mathrm{y}$ axis.

