

3220

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2018 DCE-THIRD SEMESTER EXAMINATION HYDRAULICS

Time : 3 hours]
Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. The specific gravity of a liquid is $2 \cdot 5$. What are its specific weight, mass density and specific volume?
2. Convert the following into absolute pressure :
(a) Vacuum pressure of 4.5 m of water
(b) Vacuum pressure of $58 \mathrm{kN} / \mathrm{m}^{2}$
3. A Pitot static tube having a coefficient of 0.98 is placed at the centre of a pipeline in which Benzene is flowing. The Pitot tube shows a reading of 10 cm . Calculate the velocity at the centre line of the pipe.
4. An internal mouthpiece of dia. 50 mm is discharging water under a constant head of 8 m . Find the discharge in $\mathrm{m}^{3} / \mathrm{sec}$, if the mouthpiece is-
(a) running free;
(b) running full.
5. State various classifications of notche.
6. A weir 12 m long has a constant head of water 300 mm . Taking the coefficient of discharge as $0 \cdot 62$, determine the discharge over the weir in lit/sec.
7. Find the loss of head due to friction in a pipe of diameter 200 mm and length 60 m , when the velocity of water in the pipe is $2.5 \mathrm{~m} / \mathrm{s}$. Use Chezy's formula. Assume $\mathrm{C}=35$.
8. What do you understand by the term 'most economical section' of a channel?
9. What are the main components of Francis turbine?
10. Explain with neat sketches anchor blocks and tail race.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A sluice gate of breadth 2 m depth 1.2 m contains a liquid of specific gravity 1.45 on the u / s of it up to a height of 1.5 m above the top edge of the gate. There is water on the d / s up to the top edge of the gate. Find the resultant pressure and centre of pressure.
12. The diameter of pipe changes gradually from 150 mm at a point A to 100 mm at point B which are situated at 20 m and 16 m respectively above the datum. The pressure at A is $0.2 \mathrm{~N} / \mathrm{mm}^{2}$ and velocity of flow at A is $1 \cdot 1 \mathrm{~m} / \mathrm{sec}$. Neglecting losses between A and B, determine the pressure at B.
13. Explain the experimental method of finding hydraulic coefficients of a small orifice.
14. A broad crested weir 50 m long has 50 cm height of water above the crest. Calculate the max. discharge over the weir, if the velocity of approach is $1.25 \mathrm{~m} / \mathrm{s}$. Assume coefficient of discharge as 0.65 . Neglect the end contractions, if any.
15. Two reservoirs, whose surface levels differ by 30 m , are connected by a pipe of 600 mm dia and 3 km long. The pipeline crosses a ridge, whose summit is 9 m above the higher reservoir. Find the minimum depth below the ridge at which the pipe most be laid, if the absolute pressure in the pipe is not to fall below 8 m of water. Also calculate the discharge through the pipe. Take, $f=0 \cdot 0075$. The length of inlet leg is 300 m .
16. Design the most economical earthen trapezoidal channel with velocity of $1 \mathrm{~m} / \mathrm{sec}$ and to discharge $3 \mathrm{~m}^{3} / \mathrm{sec}$ having side slopes $1 \mathrm{~V}: 2 \mathrm{H}$. Take, $C=45$. Bed slope of channel is 1 in 1200 .
17. With the help of a sketch, briefly explain the working of a centrifugal pump.
18. (a) What is compound pipe? How do you determine equivalent size of a compound pipe?
(b) An earthen channel with 3 m wide base and side slopes 1:1 carries water with a depth of 1 m . The bed slope is 1 in 1600 and Manning's $N=0 \cdot 04$. Calculate the discharge.

