

3238

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH / APRIL - 2019

DECE - III SEMESTER EXAMINATION CIRCUIT THEORY

Time: 3 Hours] [Total Marks: 80

PART - A

 $3 \times 10 = 30$

Instructions:

- (1) Answer ALL questions.
- (2) Each question carries THREE marks.
- (3) Answer should be brief and straight to the point.
- 1 Write the expression for the resonant frequency of the following parallel circuits.
 - (a) L, C (b) RL, C (c) L, CR
- A sinusoidal signal of 5KHz frequency is applied across a $0.01\,\mu F$ capacitor. Determine the capacitive reactance.
- 3 State the difference between active and passive circuit elements.
- 4 Determine the number of mesh equations required to solve the network shown below.

3238] [Contd...

- 5 Define driving point impedance and transfer impedance of a network.
- 6 Verify the reciprocity theorem in the circuit shown in figure below:

- 7 List the limitations of Thevinen's theorem.
- **8** Write the expressions for the following parameters of low pass RC circuit.
 - (i) Upper 3dB frequency
 - (ii) Rise time in terms of upper 3dB frequency
- **9** Define:
 - (a) Co-efficient of coupling
 - (b) Critical coupling
- 10 Define reflected impedance of a coupled circuit.

 $PART - B 10 \times 5 = 50$

Instructions:

- (1) Answer any **FIVE** questions.
- (2) Each question carries TEN marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11 (a) Explain V-I characteristic of a pure inductor with a.c. source.
 - (b) Determine the r.m.s. current in the circuit shown below:

3238] Contd...

- 12 (a) Distinguish between series and parallel resonance.
 - (b) Find the value of inductance which should be connected in series with a capacitor of $5\,\mu F$ and resistor of $100\,\Omega$ and an a.c. source of 50 Hz so that power factor of the circuit is unity.
- In the following figure a balanced delta connected circuit with $Z = 10 \angle 30^{\circ} \Omega$ is parallel with a balanced star connected circuit with $Z = 4 \angle 45^{\circ} \Omega$. Obtain the star connected equivalent,

14 Determine the voltages at nodes 1 and 2 of the network shown below by using input and transfer admittances,

- 15 (a) Explain ideal voltage source and ideal current source. 4
 - (b) A constant current source develops a terminal voltage of 9V when a 500Ω resistor is connected across its terminals. What is its terminal voltage when the 500Ω resistor is replaced by a $1.5 \text{ K}\Omega$ resistor?

3238] [Contd...

16 Obtain Norton equivalent circuit at the terminals A, B for the circuit shown in figure,

17 At what time after the switch is closed in the following figure does $V_1(t)$ reach 15 V,

- 18 For the circuit shown below:
 - (a) Find the time constant
 - (b) After how many time constants will the current have decayed to one-half its maximum value ?

