

C09-Ee-303

3241

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2018 DEEE-THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

PART—A
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Explain ideal voltage source and ideal current source.
2. Three resistors, having resistance of $20 \Omega, 30 \Omega$ and 50Ω, are connected in delta as branches of $A B, B C$ and $C A$ respectively. Calculate the resistances of equivalent star values.
3. Perform the following operations :
(i) $A+B$
(ii) A / B if $A=3+j 4, B=10 \angle 60^{\circ}$
4. Define the terms (a) form factor and (b) peak factor.
5. Two currents are given by the expression

$$
i_{1}=10 \sin \left(314 t+45^{\circ}\right) \mathrm{amp} ; i_{2}=8 \sin \left(314 t+60^{\circ}\right) \mathrm{amp}
$$

Find $i_{1}+i_{2}$ and represent in the similar form.
6. Define Q-factor of series resonant circuit.
7. Derive the formulae for impedance for the $R-C$ series circuit when it is connected to AC supply.
8. Draw a vector diagram of an $R-L-C$ series circuit if $X_{L}>X_{C}$.
9. State the advantages of 3-phase system over single-phase system.
10. Write the relation between line and phase values of current and voltage in 3-phase star and delta circuit.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State and explain Kirchhoff's laws.
(b) In the network shown below, find the current and its nature through batteries A and B. Also determine the PD across the external resistance.

12. (a) State Norton's theorem.
(b) Find the value of R_{L} in the figure given below for the maximum power consumed by R_{L} and find the maximum power :

13. An alternating current of frequency 60 Hz has a maximum value of 120 A .
(a) Write the equation for instantaneous value.
(b) Reckoning time from the instant the current is zero and becoming positive. Find the instantaneous value after $1 / 360 \mathrm{sec}$.

Time taken to reach 96 A for the first time.
14. (a) The current flowing through a pure inductor is 20 A. Find the inductance and power consumption, when the voltage applied across the inductor is $V=200 \sin 314 t$.
(b) Show that the power consumed by a pure inductor is zero, when AC supply is applied to it.
15. A coil of resistance 10Ω, inductance $0 \cdot 2 \mathrm{H}$ is connected across a capacitor. The combination is connected to 230 V , variable frequency supply. The resonance frequency is 150 Hz . Find (a) X_{L}, (b) Z_{L}, (c) capacitance, (d) Q-factor of the coil and (e) current through the coil.
16. An $R-L$ circuit takes a current of 3 A at a p.f. of $0 \cdot 6$ lag when connected to a $115 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Another $R-C$ circuit takes a current of 5 A at a p.f. 0.8 lead when connected to the same supply. If the two circuits are connected in series across a 230 V, 50 Hz supply, calculate-
(a) the resistance and inductance of R - L circuits;
(b) the resistance and capacitance of $R-L$ circuits;
(c) the current, power consumed and p.f. of the combined circuit.
17. A three-phase delta-connected RYB system with an effective voltage of 400 V , has a balanced load with impedances $(6+j 8) \Omega$. Calculate the-
(a) phase currents;
(b) line currents;
(c) power in each phase.
18. (a) State and explain Thevenin's theorem.
(b) A resistance of 10Ω and an inductance of $0 \cdot 1 \mathrm{H}$ are connected in series across a supply of 220 V and 50 Hz . Determine the-
(i) impedance;
(ii) current;
(iii) power factor;
(iv) power.

