3249

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2018 DME-THIRD SEMESTER EXAMINATION

THERMAL ENGINEERING-I

Time : 3 hours]

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. (a) Convert $100^{\circ} \mathrm{C}$ into absolute units. $1 \frac{1}{2}$
(b) Convert 575 K into centigrade units. $11 / 2$
2. An ideal gas has a mass of 2 kg and occupies $3 \mathrm{~m}^{3}$ at a temperature of $30^{\circ} \mathrm{C}$ and a pressure of $300 \mathrm{kN} / \mathrm{m}^{2}$. Determine the gas constant.
3. A constant volume chamber of $0.4 \mathrm{~m}^{3}$ capacity contains 2 kg of a gas at $10{ }^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Calculate the initial pressure of gas. Take, $C_{p}=1.973 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{K}$ and $C_{v}=0.1511 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K} . \quad 2+1$
4. A constant volume chamber of $0.4 \mathrm{~m}^{3}$ capacity contains 2 kg of a gas at $10^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Determine the change in entropy. Take, $C_{p}=1.973 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$ and $C_{v}=0.1511 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K} . \quad 2+1$
5. Write Dulong's formula for HCV. Explain the significance of ' 144000 ' in the formula.
$1 \frac{1}{2}+1^{1 / 2}$
6. Write Dulong's formula for HCV. What is the significance of ' 9270 ' in the formula?
$1_{1 / 2}^{1}+1 \frac{1}{2}$
7. Determine the efficiency of an engine working on the Carnot cycle. If heat is absorbed at $540^{\circ} \mathrm{C}$ and rejected at $45^{\circ} \mathrm{C} . \quad 2+1$
8. Determine the specific entropy of superheated steam at 12 bar and $310{ }^{\circ} \mathrm{C}$.
9. The specific volume of steam at 9 bar pressure is recorded as $0 \cdot 1659 \mathrm{~m}^{3} / \mathrm{kg}$. Determine the quality of the steam.
10. A refrigeration system requires 1.5 kW per ton of refrigeration. Calculate the COP of the system.

> PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A system executes a cyclic process as follows :

At point $1,20 \mathrm{~kJ}$ of heat is supplied and 3 kJ of work done by the system. At point $2,2 \mathrm{~kJ}$ of heat is rejected and 5 kJ of work is done by the system. At point $3,15 \mathrm{~kJ}$ of heat is supplied and 9 kJ of work is done by the system. At point $4,5 \mathrm{~kJ}$ of heat is supplied to the system.
Calculate what is the work done at the fourth point.
12. The values of specific heats at constant volume and constant pressure of an ideal gas are $0.73 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$ and $0.98 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$ respectively. If 1 kg of this fuel is heated at constant pressure from $30^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$, calculate (a) the heat added, (b) ideal work done and (c) change in internal energy. $4+3+3$
13. 2 kg of air at 9 bar and $327{ }^{\circ} \mathrm{C}$ expands adiabatically to a pressure of 1 bar. Determine (a) the final volume, (b) final temperature, (c) work energy transferred during the process, (d) change in internal energy and (e) change in enthalpy.

$$
2+3+3+2
$$

14. The following is the percentage composition of a sample of coal on mass basis :

$$
\mathrm{C}-82 ; \mathrm{H}_{2}-6 ; \mathrm{O}_{2}-9 ; \text { and Ash-3 }
$$

Determine-
(a) the minimum mass of air required for complete combustion of coal;
(b) the volumetric analysis of the products of combustion if 10% excess air is supplied.
Assume that air contains 23% oxygen on mass basis.
15. An engine working on diesel cycel has compression ratio of $12: 1$ and expansion ratio of $8: 1$. The pressure and temperature at the beginning of compression are 2 bar and $45{ }^{\circ} \mathrm{C}$ respectively. Pressure before the heat rejection is 3.5 bar. Determine (a) air standard efficiency of the cycle and (b) maximum temperature and pressure attained in the cycle. Assume $\gamma=1$. 4 .
16. Steam at 28 bar enters boiler carrying 5\% moisture. After passing through the superheater, its temperature raised to $350{ }^{\circ} \mathrm{C}$ at the same pressure. Determine the (a) change in enthalpy and (b) change in specific volume.
17. (a) A steel cylinder of 50 litre capacity contains carbon dioxide at $20^{\circ} \mathrm{C}$ and at a pressure of 100 bar. Calculate (a) mass of gas and (b) the mole volume. Take, $R_{u}=8.314 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$.
(b) An engineer claims his engine to develop 3.5 kW . On testing the engine consumes 0.5 kg of fuel/hour having a calorific value of $40000 \mathrm{~kJ} / \mathrm{kg}$. The maximum temperature recorded in the cycle is $1200^{\circ} \mathrm{C}$ and the minimum is $325^{\circ} \mathrm{C}$. Find whether the engineer's claim is justified.
18. (a) A cold storage is supplied with 5000 kg fish at $25^{\circ} \mathrm{C}$ for preserving the fish. The temperature is to be maintained at $-8^{\circ} \mathrm{C}$ in 10 hours.

Freezing point of fish $=-3^{\circ} \mathrm{C}$
Specific heat above freezing point $=3 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$
Specific heat below freezing point $=1.25 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$ Latent heat of freezing of fish $=2200 \mathrm{~kJ} / \mathrm{kg}$
Find the capacity of the plant.
(b) The capacity of a refrigerator is 150 TR. Determine the quantity of ice produced at $-3^{\circ} \mathrm{C}$ within 24 hours when water is supplied at a temperature of $15{ }^{\circ} \mathrm{C}$. Take specific heat of ice $=2 \cdot 1 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{K}$.

