со9-м-305

3249

BOARD DIPLOMA EXAMINATION, (C-09) OCTOBER/NOVEMBER-2018
 DME - THIRD SEMESTER EXAMINATION

THERMAL ENGINEERING - I

PART-A

$3 \times 10=30$
Instructions : 1. Answer All questions.
2. Each question carries three marks.
3. Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. A complete cycle of a system is subjected to the following heat transfers, 848 KJ supplied and 58 KJ rejected. At two points work is done by the system to an extent of 95 KJ and 205 KJ . At third point there is a further work transfer. Determine the amount of work transfer. State whether it is done by the system or on the system.
2. An ideal gas has a mass of 2 kg and occupies $3 \mathrm{~m}^{3}$ at a temperature of $30^{\circ} \mathrm{C}$ and a pressure of $300 \mathrm{kN} / \mathrm{m}^{2}$. Determine the gas constant.
3. A constant volume chamber of $0.4 \mathrm{~m}^{3}$ capacity contains 2 kg of gas at $10^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Calculate the initial pressure of gas. Take $\mathrm{C}_{\mathrm{p}}=1.973 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$ and $\mathrm{C}_{\mathrm{v}}=0.1511 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$
4. 3 kg of air is heated at constant volume such that the temperature changes from $25^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$. Determine the change in internal energy. Take $\mathrm{C}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$ and $\mathrm{R}=0.287$ $\mathrm{kJ} / \mathrm{kg}^{\mathrm{o}} \mathrm{K}$
5. Prove that 1 kg sulphur requires 1 kg oxygen to form 2 kg sulphur dioxide.
6. Prove that 1 kg methane needs 4 kg oxygen for carbon to form $9 / 4 \mathrm{~kg}$ steam $\left(\mathrm{H}_{2} \mathrm{O}\right)$
7. Determine the efficiency of an engine working on the Carnot cycle. If heat is absorbed at $540^{\circ} \mathrm{C}$ and rejected at $45^{\circ} \mathrm{C}$.
8. Determine the enthalpy and specific volume of wet steam at a pressure of 20bar and dryness fraction of 0.85 .
9. A vessel of volume $0.03 \mathrm{~m}^{3}$ wet steam of quality 0.9 at pressure 15 bar. Determine it's mass.
10. Determine the amount of heat must be removed from water at $25^{\circ} \mathrm{C}$ to produce ice at $5^{\circ} \mathrm{C}$.

PART-B

$10 \times 5=50$
Instructions : 1. Answer any Five questions.
2. Each question carries ten marks.
11. A gauge pressure reads 80 cm of Mercury. Convert this pressure in
(a) Pascals
(b) KPa
(c) Bar
12. 3 kg of air at 1 bar and $400^{\circ} \mathrm{K}$ is compressed polytropically to a pressure of 12 bar . Then the air temperature rises to $600^{\circ} \mathrm{K}$ determine:
(a) the polytropic index
(b) the final volume
(c) the work of compression and
(d) the amount of heat rejection from the air. Assume $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$
13. The values of specific heats at constant volume and constant pressure of an ideal gas are $0.73 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$ and $0.98 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$ respectively. If one kg of this fuel is heated at constant pressure from $30^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$. Calculate
(a) The heat added
(b) Ideal work done
(c) Change in internal energy.
14. A bomb calorimeter was used to determine the calorific value of a sample of coal and the following readings were recorded:

Mass of coal burnt	$=1.01 \mathrm{gm}$
Mass of water	$=1100 \mathrm{gm}$
Water equivalent of apparatus	$=650 \mathrm{gm}$
Initial temperature of water	$=25^{\circ} \mathrm{C}$
Final temperature of water	$=28^{\circ} \mathrm{C}$
Cooling correction	$=+0.016^{\circ} \mathrm{C}$

Determine the calorific value of coal sample. Also find LCV if the fuel contains 5\% hydrogen
15. An ideal diesel cycle operates with 1 kg of standard air at an initial pressure of 1.5 bar and temperature of $40^{\circ} \mathrm{C}$. The pressure at the end of the compression is 35 bar and the cutoff is 5% of the stroke. Determine
(a) compression ratio
(b) the heat supplied
(c) the heat rejected

Take $\gamma=1.4$ and $\mathrm{C}_{\mathrm{p}}=1 \mathrm{KJ} / \mathrm{Kg}^{0} \mathrm{~K}$
16. Steam initially at a pressure of 14 bar and $250^{\circ} \mathrm{C}$ expands isentropically to 2 bar . Determine (a) the final condition (b) work transfer (c) change in internal energy.
17. (a) An ideal gas is expanded from $400 \mathrm{kN} / \mathrm{m}^{2}$ and $0.04 \mathrm{~m}^{3}$ to $120 \mathrm{kN} / \mathrm{m}^{2}$ and $0.1 \mathrm{~m}^{3}$. The temperature drop during this process is observed as $150^{\circ} \mathrm{C}$. Calculate the mass of the gas $\mathrm{C}_{\mathrm{v}}=0.726 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$ and $\mathrm{C}_{\mathrm{p}}=1.025 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K}$
(b) An engineer claims his engine to develop 3.5 KW . On testing the engine consumes 0.5 Kg of fuel/hour having a calorific value of $40000 \mathrm{KJ} / \mathrm{Kg}$. The maximum temperature recorded in the cycle is $1200^{\circ} \mathrm{C}$ and the minimum is $325^{\circ} \mathrm{C}$. Determine whether the engineer's claim is justified.
18. (a) A cold storage is supplied with 3000 Kg of fish at $26^{\circ} \mathrm{C}$. The fish has to be cooled to $-9^{0} \mathrm{C}$. The freezing points of fish is $-3^{0} \mathrm{C}$
Specific heat of fish above freezing point $=3 \mathrm{KJ} / \mathrm{Kg}^{0} \mathrm{~K}$
Specific heat of fish below freezing point $=1.25 \mathrm{KJ} / \mathrm{Kg}^{0} \mathrm{~K}$
Latent heat of freezing of fish $=210 \mathrm{KJ} / \mathrm{Kg}^{0} \mathrm{~K}$
If the capacity of the plant is 15 tons, how long it will take to cool the fish.
(b) The capacity of a refrigerator 150 TR . Determine the quantity of ice produced at $-3^{0} \mathrm{C}$ within 24 hrs when water is supplied at a temperature of $15^{\circ} \mathrm{C}$. Take specific heat of ice $=2.1 \mathrm{KJ} / \mathrm{Kg}^{0} \mathrm{~K}$

