

3503

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH / APRIL - 2019

DME - IV SEMESTER EXAMINATION STRENGTH OF MATERIALS

Time: 3 Hours] [Total Marks: 80

PART - A

 $3 \times 10 = 30$

Instructions:

- (1) Answer ALL questions.
- (2) Each question carries THREE marks.
- (3) Answer should be brief and straight to the point.
- A.M.S. bar of diameter 10 mm and 350 mm long is subjected to an axial load of $15 \, kN$. Calculate the Extension of the bar and change in diameter. Assume $E_s = 2 \times 10^5 \, N / mm^2$ and poisson's ratio 0.25.
- A Steel rod 3 m long is fixed rigidity at the ends and heated through a temperature of $800^{\circ}C$ Find the prevented expansion take $\alpha_s as = 12 \times 10^{-6} / {^{\circ}C}$.
- An M. S specimen of 15 mm diameter and 50 mm. gauge length is subjected to a sudden axial pull of $32 \, kN$. Calculate the maximum stress and elongation. Take $E = 200 \, KN \, / \, mm^2$.
- 4 A Simply Supported Beam having a span of 10 m carries u.d.l. of 3 kN / m over its entire span. Find max Bending Moment.
- 5 Define the following terms.
 - (a) Reactions (b) Point of Contraflexure.

- A Steel strip of 10 mm thick is bent round a circular drum of 3 m diameter. Calculate the maximum Stress developed in the strip. Take E for Steel $200 \, kN / mm^2$.
- 7 State Bending equation and mention the terms.
- A Laminated Spring of 1 m long is made of 11 no. of Steel plates each 50 mm wide and 10 mm. thick. Find Bending Stress induced, if it is to carry a central point load of 5 kN.
- A close coiled helical spring of 20 coils has a wire diameter of 5 mm and mean coil diameter of 30 mm. Find the stiffness of spring. Take $G = 8.4 \times 10^4 N / mm^2$.
- A Thin Cylindrical Shell having 2 m diameter and 5 m length is subjected to a hoop stress of $75 N/mm^2$ Calculate change in length. Assume poinson's ratio as 0.32 and Young's Modulus as $2.1 \times 10^5 N/mm^2$.

PART - B $10 \times 5 = 50$

Instructions:

- (1) Answer any FIVE questions.
- (2) Each question carries TEN marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11 Discuss the behaviour of a Mild Steel specimen when subjected to a tensile test.
- Write short: notes an the following five Mechanical Properties of materials,
 - (a) Modulus of Elasticity
 - (b) Ductility
 - (c) Malleability
 - (d) Brittleness
 - (e) Hardness.

- A Mild Steel-bar of length 3 m and diameter of 50 mm hangs vertically and a load of 200kN falls on a collar attached to the lower end. Find the maximum stress when
 - (a) Height of fall is 150 mm
 - (b) Load is applied suddenly with out impact
 - (c) Load is applied gradually. Take $E = 2 \times 10^5 N / mm^2$.
- 14 Explain the following with sketches,
 - (a) Types of Beams
 - (b) Types of Loads
- A Cantilever beam of 5 m long subjected to a u.d.1 of $10 \, kN / m$ over a length of 2 m. commenced at 2.5 m from fixed end and carries point loads of 25 kN and 30 kN at its free end and at 1 m from fixed end respectively. Draw the Load Diagram, Shear Force Diagram and Bending Moment Diagram.
- A beam having 300 mm cross section is Simply Supported over a span of 5 meters. Determine the maximum central point load that can be placed if the
 - (a) Bending-Stress is not to exceed $80N/mm^2$
 - (b) Maximum Deflection is limited to 8 mm. $E = 2 \times 10^5 N / mm^2$
- 17 (a) State the assumptions made in Torsion equation,
 - (b) Write dawn the Torsion equation with usual notations and describe the terms involved
- 18 (a) A hollow shaft of 100 mm outside diameter and 80 mm inside diameter is having an allowable stress of $60 N/mm^2$. Find. the Torque transmitted and stress at a radius of 40 mm from the axis of the shaft.
 - (b) A water main 1.5m. diameter contains water at a pressure head of 100 m. If the specific weight of water is $9810 N/m^3$, find the thickness of the metal required for water main. Given permissible stress is $30 N/mm^2$.