4401

BOARD DIPLOMA EXAMINATION, (C-14)
 OCTOBER/NOVEMBER-2018 FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS - III

Time : 3 Hours]
[Total Marks: 80

PART-A

$3 \times 10=30$
Instructions : 1. Answer All questions.
2. Each question carries Three marks.
3. Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve: $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+4 \mathrm{y}=0$
2. Solve $\frac{d^{3} y}{d x^{3}}-7 \frac{d^{2} y}{d x^{2}}+16 \frac{d y}{d x}-12 y=0$
3. Find the particular integral of $\left(D^{2}+4\right) y=\sin 3 x$
4. Find the Laplace transform of $\sin 6 t \cos 2 t$
5. Find the Laplace transform of $\sin ^{2} t$
6. Evaluate $\mathrm{L}\left\{\frac{\sin t}{t}\right\}$
7. Find $\mathrm{L}^{-1}\left\{\frac{1}{(S+a)^{3}}\right\}$
8. Write the Fourier series for the function $f(x)$ defined in the interval $(C, C+2 \pi)$
9. Find the Fourier coefficient a_{0} for $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ in $0<\mathrm{x}<2 \pi$
10. A bag contains 5 black, 7 red and 3 white balls. A ball is drawn in random. Find the probability that the ball drawn is red.

PART-B

Instructions : 1. Answer any Five questions.
2. Each question carries ten marks.
3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer
11. (a) Solve : $\left(D^{2}-4\right) y=e^{3 x}$
(b) Solve: $\left(D^{2}+D+1\right) y=2 \sin 3 x$
12. (a) Solve: $\left(D^{2}-4 D+4\right) y=x^{3}$
(b) Solve: $\left(D^{2}+4\right) y=\cos 2 x$
13. (a) Evaluate L $\left(\frac{1-\cos t}{t}\right)$
(b) Evaluate $\left(\int_{0}^{\infty} t e^{-t} \sin t d t\right)$
14. Use Laplace transform method to solve $\frac{d^{2} y}{d t^{2}}+y=t$, given that $y(0)=1, y^{1}(0)=-2$
15. Expand $f(x)=x$ as a Fourier series in the interval $0<x<2 \pi$
16. Find the half-range cosine series for the function $f(x)=x^{2}$ in the interval $(0, \pi)$ and hence find the sum of the series
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+$. \qquad
17. A problem in statistics is given to three students A, B, C, whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. If they try it independent, what is the probability that the problem will be solved?
18. Bag I contains 3 red and 4 black balls, while another bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from bag II

