4019

BOARD DIPLOMA EXAMINATION, (C-14)
OCTOBER/NOVEMBER-2018
DCE-FIRST YEAR EXAMINATION

ENGINEERING MECHANICS

PART-A

Instructions : 1. Answer All questions.
2. Each question carries FOUR marks
3. Answer should be brief and straight to the point

1. (a) State Varignon's theorem.
(b) Define moment.
2. Define the following (a) Statics (b) Dynamics.
3. (a) State the coordinates of centroid for rectangle of width 'b' depth 'h'.
(b) State the differences between centroid and centre of gravity.
4. (a) Differentiate between coplanar and non coplanar forces.
(b) Distinguish between scalar and vector quantities.
5. (a) Write any three necessities of finding the centroid.
(b) State \bar{X}, \bar{Y} of semi circle, resting on its diameter.
6. Define (a) Polar moment of inertia (b) Radius of gyration.
7. Calculate the moment of inertia about $x-x$ axis of a
(a) Rectangular section having dimension $300 \times 600 \mathrm{~mm}$.
(b) Circular section of 400 mm dia.
8. (a) Define young's modulus and state its units.
(b) Define modulus of rigidity.
9. (a) State Hooke's law.
(b) Define poission's ratio.
10. Define (a) Bulk Modulus (b)Strain energy.

PART-B

$$
10 \mathrm{X} 4=40
$$

Instructions : 1. Answer any four questions. Each question carries ten marks.
2. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer
11. (a) State Lam's theorem and give the expression.
(b) A Body of weight 1000 N is suspended by two strings of 4 m and 3 m lengths attached at the same horizontal level 5 m apart as shown in fig. calculate the forces in the strings using Lami's theorem.

12. (a) State polygon law of forces.
(b) Four forces of $100 \mathrm{~N}, 200 \mathrm{~N}, 300 \mathrm{~N}$ and 400 N are acting at a point in the east, 45^{0} North East, 45^{0} North West and 45^{0} South West directions respectively find the resultant and also its direction.
13. (a) Find the centroid of T-section whose flange is $120 \times 20 \mathrm{~mm}$ and web is $100 \times 20 \mathrm{~mm}$.
(b) Find the centroid of I section. Top flange $60 \times 20 \mathrm{~mm}$, web $20 \times 100 \mathrm{~mm}$ and bottom flange $100 \times 20 \mathrm{~mm}$.
14. (a) Draw to examples of built up sections.
(b) Find the moment of inertia of a built up section about its centroidal $x-x$ axis, with top flange $60 \times 10 \mathrm{~mm}$, bottom flange $120 \times 10 \mathrm{~mm}$ and web $10 \times 80 \mathrm{~mm}$. It has a top cover plate of $100 \times 10 \mathrm{~mm}$. centrally placed.
15. (a) Find the least radius of gyration of a channel section of size $100 \times 200 \mathrm{~mm}$ and thickness of 10 mm .
(b) Calculate I_{xx} through the centroid of Z-section shown in figure (given at the end).

16. (a)A short timber post rectangular cross section is to a compressive force of 10 kN and the contraction is found to be 0.1563 mm in a length of 1.5 m . Determine the cross sectional area of the post if modulus of elasticity of timber is 12Gpa.
(b) A 4 m rectangular beam of $230 \times 300 \mathrm{~mm}$ is subjected to 20 kN compressive force. Find contraction of the beam, taking $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
17. (a) State the formula for Temperature stress and hoop stress.
(b) A bar 300 mm long is 40 mm diameter in section for first 120 mm of its length, 25 mm diameter for next 80 mm and 40 mm diameter for the remaining length. If a tensile force of 100 kN is applied to the bar, calculate the maximum and minimum stresses produced in it and the total elongation. Assume uniformly distributed load over the cross Section. E for the material $=2 \times 10^{8} \mathrm{kPa}$.
18. (a) Calculate the total change in length of the bar 40 mm diameter given below. Take the value of young's modulus as $1.05 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

(b) Explain any four mechanical properties of the materials.

