C14-C-302

4221

BOARD DIPLOMA EXAMINATION, (C-14)
OCTOBER/NOVEMBER-2018
DCE-THIRD SEMESTER EXAMINATION

MACHANICS OF SOLIDS

PART-A

$$
3 \times 10=30
$$

Instructions : 1. Answer All questions.
2. Each question carries THREE marks
3. Answer should be brief and straight to the point

1. Define (i) Shear Force and (ii) Bending moment.
2. A simply supported beam of 4 m long is loaded with a u.d.l. of $20 \mathrm{kN} / \mathrm{m}$ throughout its span. Find the maximum bending moment.
3. Define " Point of contra flexure".
4. Define "Modulus of section".
5. Obtain the size of the strongest beam that can cut out of a circular log of wood which has 220 mm diameter.
6. Draw shear stress distribution across depth of a T-section.
7. Define Mohr's theorem I and Mohr's theorem II.
8. Draw the deflected shapes of the following beams. Under a udl of $10 \mathrm{KN} / \mathrm{m}$
(i) Cantilever beam (ii) Simply supported beam and (iii) Single overhanging beam.
9. State the relation between slope, deflection and radius of curvature.
10. Distinguish between strength and stiffness of a beam.

PART-B

Instructions : 1. Answer any five questions.

2. Each question carries ten marks.
3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer
4. A simply supported beam $A B, 6 \mathrm{~m}$ long is loaded as shown in fig- 1 . Construct the Shear force and bending moment diagrams for the beam and find the position and value of maximum bending moment.

Fig-1
12. A beam ABCDE of 8 m length supported at 1 m and 6 m from L.H.S it is loaded with three point loads of $20 \mathrm{kN}, 41 \mathrm{kN}$ and 10 kN at $0 \mathrm{~m}, 4 \mathrm{~m}$ and 8 m from R.H.S respectively. In addition it also carries a u.d.l.. of $5 \mathrm{kN} / \mathrm{m}$ for a length of 6 m from L.H.S. draw the S.F. and B.M. diagrams
13. (a) Write any 4 assumption made in theory of simple bending.
(b) a rectangular beam of breadth 300 mm and depth 500 mm in simply supported over a span of 6 m . Find the max udl the beam can carry, if the bending stress is limited to $20 \mathrm{~N} / \mathrm{mm}^{2}$.
14. A rectangular timber beam is simply supported at the ends and carries a concentrated load at its mid span. The maximum longitudinal stress is ' σ ' and the maximum shear stress is ' τ '. Find the ratio of the span to the depth of the beam ignoring the self weight of the beam. Take $\sigma=8 \mathrm{~N} / \mathrm{mm}^{2}$ and $\tau=1 \mathrm{~N} / \mathrm{mm}^{2}$.
15. A beam simply supported over a span of 10 m carries two concentrated loads of 60 kN and 40 kN at 3 m and 7 m respectively from L.H.S. and in addition it also carries a u.d.l. of $15 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from L.H.S. determine the position and amount of maximum deflection. Given $\mathrm{l}=695.054 \times 10^{6} \mathrm{~mm}^{4}$ and $\mathrm{E}=200 \mathrm{GPa}$. Use Macaulay's method.
16. A simply supported beam a span 6 m carries a central point load of 20 kN and u.d.l. of $10 \mathrm{kN} / \mathrm{m}$ over entire span. Find the maximum slope and deflection by moment area method. Given that flexural rigidity of the beam is $4000 \mathrm{kN}-\mathrm{m}^{2}$.
17. A cylindrical boiler 2.5 m diameter and 5 m long is subjected to $4 \mathrm{~N} / \mathrm{mm} 2$ internal pressure. If the maximum permissible stress is $125 \mathrm{~N} / \mathrm{mm} 2$ in the boiler wall, find the thickness of the shell. Also find the changes in diameter, length and volume. Given $\mathrm{E}=210 \mathrm{GPa}$ and poisson's ration $=0.25$.
18. A hollow circular shaft of 4.0 m length is to transmit a power of 120 kW at $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. determine the outer and inner diameters of the shaft if the diameter ratio is 0.8 . the maximum shear stress in the shaft should not exceed 90MPa. Take the maximum Torque as 25% greater than the mean Torque.

