4420

BOARD DIPLOMA EXAMINATION, (C-14) OCTOBER/NOVEMBER-2018
 DCE - FOURTH SEMESTER EXAMINATION

THEORY OF STRUCTURES

Time : 3 Hours]
[Total Marks: 80

PART-A

$3 \times 10=30$
Instructions : 1. Answer All questions.
2. Each question carries three marks.
3. Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. State any 3 assumptions of Euler's theory for columns.
2. Show different forces acting over a masonry dam with a neat sketch
3. A concrete dam trapezoidal in shape has top width 2 m and bottom width 6 m . Its water face is vertical. Calculate the distance of centroid from heel of the dam.
4. Define (a) Angle of repose
(b) Surcharge.
5. Find the necessary depth for the foundation of a square column supporting an axial load of 4000 KN . Safe bearing capacity of soil is $200 \mathrm{KN} / \mathrm{m}^{2}$. Angle of repose of soil is 30° and weight of the soil is $20 \mathrm{KN} / \mathrm{m}^{3}$. Use Rankine's formula.
6. Define degree of static indeterminacy.
7. Write 3 advantages of continuous beams over simply supported beams.
8. Determine the distribution factors for a continuous beam ABC fixed at both ends A and B and simply supported at center C. Span $A C=C B=L$
9. Define
a) Determine frame
b) Indeterminate frame
c) Redundant frame
10. State the different methods to analyse a determinate frame

PART-B

Instructions : 1. Answer any Five questions.
2. Each question carries ten marks.
3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer
11. A symmetrical I-section of overall length 6 m is used as a column with both ends hinged. Depth of I section $=320 \mathrm{~mm}$, width of flanges $=150 \mathrm{~mm}$, thickness of flange $=$ 10 mm , thickness of web $=8 \mathrm{~mm}$. Calculate Euler's crippling load, $\mathrm{E}=2 \times 105 \mathrm{~mm} 2$
12. A built up column is made up of 4 equal angles ISA $60 \times 60 \times 6 \mathrm{~mm}$ forming a square of side 400 mm . If the length of column is 10 m , calculate safe axial load using Rankine's formula. Assume both ends of the column to be fixed. Take factor of safety as 4. For each angle $\mathrm{A}=929 \mathrm{~mm} 2$, $\mathrm{Ixx}=\mathrm{Iyy}=56 \times 10^{4} \mathrm{~mm} 4, \mathrm{Cxx}=\mathrm{Cyy}=21.6 \mathrm{~mm}$. Rankine's constant, $\mathrm{Fc}=0.33 \mathrm{kN} / \mathrm{mm}^{2}, \mathrm{a}=1 / 1600$

13. A concrete dam 3 m wide at top and 8 m at bottom is 12 m high. The face of dam exposed to water is vertical and contains water upto the top level. Check the stability of the dam, if co-efficient of friction between dam and soil is 0.6 . The specific weight of concrete is $24 \mathrm{KN} / \mathrm{m}^{3}$ and specific weight of water is $10 \mathrm{KN} / \mathrm{m}^{3}$. Show the stress distribution at the base.
14. A masonry wall 12 m high has a vertical back and retains earth, level with the top of the wall. The top width of wall is 3.5 m . Determine the minimum base width required for the wall so that the stresses at the base are wholly compressive. Specific weight of masonry is $22 \mathrm{KN} / \mathrm{m}^{2}$ and that of earth is $18 \mathrm{KN} / \mathrm{m}^{2}$. Angles of repose of soil is 30°
15. An I-section of span 5 m is used as a beam. It is fixed at both ends and carries a point load of 15 KN at mid span. Calculate
a) Fixed moments at ends
b) Reactions at supports
c) Position and magnitude of maximum deflection

Take E $=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=200 \times 10^{6} \mathrm{~mm}^{4}$
16. A continuous beam ABC has 2 spans $\mathrm{AB}=4 \mathrm{~m}$ and $\mathrm{BC}=6 \mathrm{~m}$. A udl of $10 \mathrm{kN} / \mathrm{m}$ acts over the full span AB and a point load 40 kN acts at a distance of 3 m from RHS in span BC. Determine the moments over the beam and draw SFD and BMD. Use theorem of three moments.
17. Analyse the continuous beam as shown in the figure by moment distribution method.

18. Find the magnitude and nature of forces in all the members of truss shown in the figure. Use method of joints.

