4715

BOARD DIPLOMA EXAMINATION, (C-14) OCTOBER/NOVEMBER-2018 DCE- SIXTH SEMESTER EXAMINATION

STRUCTURAL ENGINEERING DRAWING

Time : 3 Hours]
[Total Marks: 60

PART-A

Instructions : 1. Answer All questions.
2. Each question carries four marks.
3. Need not drawn to a scale.
4. Assume suitable data if necessary

1. State four important points to be considered in positioning and orientation of columns.
2. Draw the longitudinal section of the T-beam with the following specifications:

Clear span of T-beam	$:$	6000 mm
Bearing on walls	$:$	230 mm (Full bearing)
Thickness of roof slab	$:$	120 mm
Overall depth of T-beam	$:$	400 mm
\quad(Including slab thickness)		
Width of T-beam	$:$	230 mm

Reinforcement:

Main bars	:	16 mm dia 3 Nos (out of which 1 bar is cranked at a distance of 850 mm from the face of the support)
Hanger bars	.	$12 \mathrm{~mm} \mathrm{dia}, 2 \mathrm{No}$'s
Stirrups	.	8 mm dia, 2 legged stirrups at $200 \mathrm{~mm} \mathrm{C/C}$ throughout

Covers:-

All covers to beam reinforcement $=40 \mathrm{~mm}$
3. Draw the details of reinforcement at the junction of column and beam of a frame designed as earthquake resistance structure
4. Prepare the bar bending schedule and find the quantity of steel required for the main reinforcement for the simply supported beam shown in the figures below. Take top and bottom covers ad 25 mm and side covers as 40 mm .

LONGITUDINAL SECTION
weight of bms
$20 \mathrm{~mm} \varphi$ Gar : $2.47 \mathrm{ks} / \mathrm{mm}$
12 mms bar: $0.89 \mathrm{~kg} / \mathrm{m}$
shaner 9 Hiverup: $0.39 \mathrm{~kg} / \mathrm{mm}$
5. Draw the side elevation of a built up column with batten system, showing the bottom tie plate and battens (intermediate) upto a minimum of two No's. from the following specifications:

Specifications:

Overall height of the column is 5000 mm consists of 2 No's ISMC $250 @ 30.4 \mathrm{Kg} / \mathrm{m}$ placed back to back keeping a clear distance of 180 mm between webs.

The sizes of end battens are 220 mm deep x 10 mm thick and intermediate battens are 180 mm deep x 10 mm thick.

The spacing between the consecutive battens is 700 mm .6 mm fillet weld of 50 mm lap length and over the entire depth of batten on end face is provided as batten connection with the main component.

PART-B

$2 \times 20=40$
Instructions : 1. Answer all questions.
2. Each question carries $\mathbf{2 0}$ marks.
3. Draw all the questions to the given scale:
6. Draw the requirement details of a simply supported R.C.C one way slab with the following specifications:

Specifications:

1. Size of the room: $2800 \mathrm{~mm} \times 6000 \mathrm{~mm}$
2. Overall depth of slab: 140 mm
3. Bearing on walls: $\mathbf{2 3 0} \mathbf{m m}$ (full bearing)
4. Edge conditions: simply supported
5. (i) Main reinforcement: 12 mm dia at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (alternate bars are cranked at a distance of 400 mm from the face of support)
(ii) Distribution reinforcement: 10 mm dia at $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(iii) Provide 3 No's of 8 mm dia hanger bars at each edge to keep top bars in position.
6. Covers: -
i. Top and bottom clear cover: 20 mm
ii. Side clear cover : 25 mm

7. Materials:

i. Concrete : M-20 grade.
ii. Steel : Fe-415

Draw the following views to a scale of 1:20
a) Bottom plan of the reinforcement.
b) Cross section along the shorter span at mid span
c) Cross section along the longer span at mid span
7. From the following specifications of steel built up beam, draw the following:
(a) Longitudinal elevation of built up beam
(b) Cross section of the beam at the mid span
(c) Plan at top.

Specifications:

1. Span between the supports; $12,000 \mathrm{~mm}$
2. Width of masonry wall support : 300 mm
3. Built up beam consists of one ISMB $600 @ 122.6 \mathrm{~kg} / \mathrm{m}$ provided with two flange plates of size $280 \mathrm{~mm} \times 12 \mathrm{~mm}$, both on top and bottom flanges $(\mathrm{b}=210$, $\mathrm{t}_{\mathrm{f}}=20.8$ and $\mathrm{t}_{\mathrm{w}}=12 \mathrm{~mm}$)
4. Outermost flange plates are curtailed at the distance of 900 mm from the face of the support.
5. The flange plates are connected to the R.S.J. by fillet weld of size 6 mm , 125 mm length at spacing of 150 mm
6. At the point of curtailment of the upper flange plate be fillet welded of 6 mm over the entire width.
7. Suitable bearing plates at the ends are provided.
