

с14-ес-403

4436

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2018 DECE—FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Write the differences between active elements and passive elements.
- **2.** Explain DOT rule for coupled circuits.
- **3.** State reciprocity theorem.
- **4.** Determine the value of R_L for which the source delivers maximum power to the load R_L in the circuit diagram given below :

5. Define the terms Tree, Co-Tree and Links.

/4436

[Contd...

www.manaresults.co.in

6. Draw the dual network for the given series network :

- 7. Define the terms 'steady-state' and 'transient'.
- **8.** Write the conditions for symmetry and reciprocity in terms of *Z*, *Y*, *h*, *ABCD* parametes.
- **9.** Define the terms characteristic impedance and propagation constant.
- **10.** Design a simple T-type high-pass filter having cutoff frequency of 1 kHz to operate with a terminated load resistance of 600 .

PART—B

Instructions : (1) Answer any **five** questions.

*

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Explain ideal voltage source and ideal current source.
 - *(b)* Determine the currents in all resistors in the circuit shown below, using KCL :

50A () $R_1 > 1$ VI_1 VI_2 VI_3 $R_1 > 202$ R_2 $R_3 > 502$ R_2 R_3

[Contd...

10×5=50

4

6

www.manaresults.co.in

12. (a) Draw the Thevenin's equivalent network at terminals AB of the given network :

- (b) List the advantages of Norton's theorem.
- **13.** (a) Convert the given star-network in to an equivalent deltanetwork :

(b) Convert the given delta-network in to an equivalent star-network :

*

[Contd...

www.manaresults.co.in

3

7

5

5

14. (a) Write the mesh current equations for the given network and arrange them in matrix form :

(b) Apply super mesh techniques to find mesh currents I_1 , I_2 and I_3 for the given network : 5

15. Determine node voltages V_1 and V_2 , using Crammer's rule of the given network : 10

*

4

*

[Contd...

www.manaresults.co.in

- **16.** (a) A series *R*-*C* circuit with *R* 5000 and *C* 20 f has a constant voltage *V* 100 volts applied at t 0 by closing a switch and capacitor has no initial charge, find the complete current.
 - (b) Explain how R-C circuit acts as an integrator.
- **17.** (a) Explain the short circuit admittance (Y) parameters with equivalent circuit.
 - (b) Find the Y-parameters for the network shown below :

- **18.** (a) Draw the characteristics curves of LPF, HPF, BPF and BSF filters.
 - *(b)* Design a T-type attenuator to give 60 db attenuation and to have a line impedance of 500 .

* * *

*

AA8(T)—PDF

www.manaresults.co.in

5

4

6

5

5

5