

C14-Ec-403

4436

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2018 DECE-FOURTH SEMESTER EXAMINATION

 NETWORK ANALYSISTime : 3 hours]
Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Write the differences between active elements and passive elements.
2. Explain DOT rule for coupled circuits.
3. State reciprocity theorem.
4. Determine the value of R_{L} for which the source delivers maximum power to the load R_{L} in the circuit diagram given below :

5. Define the terms Tree, Co-Tree and Links.
6. Draw the dual network for the given series network :

7. Define the terms 'steady-state' and 'transient'.
8. Write the conditions for symmetry and reciprocity in terms of $Z, Y, h, A B C D$ parametes.
9. Define the terms characteristic impedance and propagation constant.
10. Design a simple T-type high-pass filter having cutoff frequency of 1 kHz to operate with a terminated load resistance of 600Ω.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Explain ideal voltage source and ideal current source.
(b) Determine the currents in all resistors in the circuit shown below, using KCL :

12. (a) Draw the Thevenin's equivalent network at terminals $A B$ of the given network :

(b) List the advantages of Norton's theorem.
13. (a) Convert the given star-network in to an equivalent deltanetwork :

(b) Convert the given delta-network in to an equivalent star-network :

14. (a) Write the mesh current equations for the given network and arrange them in matrix form :

(b) Apply super mesh techniques to find mesh currents I_{1}, I_{2} and I_{3} for the given network :

15. Determine node voltages V_{1} and V_{2}, using Crammer's rule of the given network :

16. (a) A series R-C circuit with $R=5000 \Omega$ and $C=20 \mu f$ has a constant voltage $V=100$ volts applied at $t=0$ by closing a switch and capacitor has no initial charge, find the complete current.
(b) Explain how R - C circuit acts as an integrator.
17. (a) Explain the short circuit admittance (Y) parameters with equivalent circuit.
(b) Find the Y-parameters for the network shown below :

18. (a) Draw the characteristics curves of LPF, HPF, BPF and BSF filters.
(b) Design a T-type attenuator to give 60 db attenuation and to have a line impedance of 500Ω.

