

4441

BOARD DIPLOMA EXAMINATION, (C-14)

MARCH / APRIL - 2019

DEEE - IV SEMESTER EXAMINATION A. C. MACHINES - I

Time: 3 Hours [Total Marks: 80

PART - A

 $3 \times 10 = 30$

Instructions:

- (1) Answer ALL questions.
- (2) Each question carries **THREE** marks.
- (3) Answer should be brief and straight to the point and shall not exceed five simple sentences.
- 1 A 33 KVA 2200/220V, 50Hz, 1- ϕ transformer has following parameters :

HV side -
$$R_1 = 2.4 \Omega$$
, $X_1 = 6 \Omega$

LV side
$$R_2 = 0.03 \Omega$$
, $X_2 = .707 \Omega$

Find

- (a) Equivalent Resistance referred to the LV side R_{02}
- (b) Equivalent Reactance referred to the LV side X_{02}
- 2 List out losses taking place in a transformer.
- **3** Why Transformer rating is expressed in KVA?
- 4 Define all day efficiency of a transformer.
- 5 State the conditions for parallel operation of 3 phase transformer.
- 6 State the advantages of 3 phase transformer over bank of 3 single phase transformers.

4441] 1 [Contd...

- 7 Compare the salient pole and non-salient pole type rotors in any four aspects.
- **8** A 3 phase, 4 pole, alternator running at 1500 RPM, calculate the frequency of induced EMF.
- **9** Define regulation of an alternator and mention required formulae.
- 10 What is necessity for parallel operation of alternators?

PART - B $10 \times 5 = 50$

Instructions:

- (1) Answer any **FIVE** questions.
- (2) Each question carries **TEN** marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11 (a) Derive the approximate equation for voltage drop of transformer at lagging P.F. with vector diagram.
 - (b) A 50 KVA transformer has on full load copper loss 2+2+1 of 600 W and iron loss of 500 W. Calculate the
 - (i) The KVA load at which maximum efficiency occurs.
 - (ii) Copper loss at maximum efficiency.
 - (iii) Maximum efficiency.
- 12 (a) Distinguish between shell type and core type transformers. 6
 - (b) A 50 KVA, 2000/200V, 50 Hz single phase transformer has impedance drop of 5% and resistance drop of 3%. Find :
 - (i) Voltage regulation at full load 0.8 Pf lagging. 2+2
 - (ii) P.f. at which voltage regulation is zero.
- 4441] 2 [Contd...

13	Explain the short circuit test on single phase transformers with neat circuit diagram and find the parameters.	
14	(a)	Derive the condition for maximum efficiency of single phase transformers.
	(b)	Develop the vector diagram of a single phase transformer for lagging power factor load. 2+2+2=6
15	Explain the 'on load' and 'off load' tap changing transformer with neat diagram.	
16	(a)	16 pole, 3 phase, 144 slots alternator has 1+2+1=4 10 conductor per slot with star connected armature winding. The air gap is sinusoidally distributed having a flux of 0.03 wb/pole. If alternator runs at 375 RPM,
		Calculate (i) Frequency of induced EMF (ii) The phase voltage and (iii) line voltage generated
	(b)	Draw the vector diagram of smooth cylindrical 2+2+2=6 alternator for different power factors (unity, lagging and leading)
17	(a)	Derive EMF equation of an alternator taking into account distribution factor and pitch factor.
	(b)	Draw the open circuit and short circuit characteristics 2+2 of alternator.
18	_	ain in detail effect of change in input and excitation of lternator connected to infinite bus.