[Contd...

4054]

4054

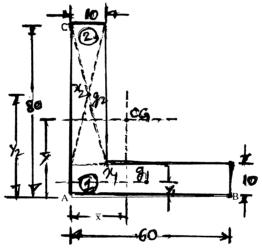
BOARD DIPLOMA EXAMINATION, (C-14)

MARCH / APRIL - 2019

DME - FIRST YEAR EXAMINATION ENGINEERING MECHANICS

Time: 3 Hours [Total Marks: 80

PART - A $4 \times 10 = 40$ Instructions: (1) Answer ALL questions. (2) Each question carries **FOUR** marks (Two marks for each bit). (3) Answer should be brief and straight to the point and shall not exceed five simple sentences. 1 (a) State Lami's theorem. 2 (b) Define equilibrium of a body. 2 (a) Define Coplaner forces. 2 2 State triangular law of forces. 2 (b) Define co-efficient of friction. 2 3 (a) 2 (b) Write any two effects of friction. Define dynamic friction. 2 4 (a) 2 Define the term angle of friction. (b) Define centre of gravity. 2 5 (a) (b) Define moment of inertia. 2 State Newton's first law of motion. 2 6 (a) Define the term time of flight. 2 (b) 2 7 (a) A car starts from rest and attains a velocity of 24 m/sec in 30 seconds. Find the acceleration. State the law of conservation of energy. 2


1

8	(a)	Define mechanical advantage.	2					
	(b)	Give the examples for first order lever.	2					
9	(a)	Write the expression for law of machine.						
	(b)	There are three pulleys, in a system of pulleys of the	2					
		first type. Find the velocity ratio.						
10	(a)	Define lower pair.	2					
	(b)	Give the mathematical relation between links and pairs.	2					
		PART - B 10×4=4	40					
Insti	ructio	ns: (1) Answer any FOUR questions.						
		(2) Each question carries TEN marks.						
		(3) Answer should be comprehensive and the criteric for valuation is the content but not the length the answer.						
11	(a)	Define the term moment.	2					
11	(b)	A particle is acted upon by the following forces:	8					
	(0)	20 N inclined 30° to north of east						
	25 N towards north							
		30 N towards north-west						
		35 N inclined at 40° to south of west						
		Find the magnitude of the resultant.						
12	(a)	Find the magnitude of two forces such that, if they act	5					
	` ′	at right angle the resultant is $\sqrt{10}$ N, but if they act 60°						
		their resultant is $\sqrt{13}$ N.						
	(b)	Find the centroid of I-section for which, the bottom	5					
	(~)	flange is 200 mm×40 mm, top flange is 100 mm×20 mm	_					
		and for web, height is 240 mm, width is 20 mm.						
4054	1	2 Contd	l					

3

- 13 (a) A body of weight 450 kN is hauled along a rough 4 horizontal plane by a pull of 100 kN acting at an angle of 25° with the horizontal. Find the coefficient of friction.
 - (b) A force of 40 kN pulls a body of weight 60 kN upon an 6 inclined plane. The force being applied parallel to the plane. The inclination of the plane to the horizontal is 30°. Calculate the coefficient of friction.
- 14 (a) State parallel axis theorem.

shown in figure about X-X and Y-Y passing through its centre of gravity.

- 15 (a) Explain about D'Alembert's principle.
 - (b) An engine capacity 1.5 MW acts on a body so that the **6** velocity changes from 10 m/sec to 25 m/sec in 6 minutes. Calculate mass of the body.
- 16 (a) A body is projected vertically upwards attains a height of 475 mm. Calculate the velocity of projection and compute the time of flight in the air.
 - (b) A bullet is fired at an angle of 45° with the horizontal 5 with a velocity of 275m/s. How high the bullet will be raised.

17	(a)	Draw a	line	diagram	of	third	system	of	pulleys.	4

- (b) A drum weighs 60 N and holding 400 N of water is to be raised from a well by means of wheel and axle. The diameter of axle is 100 mm and the diameter of wheel is 400 mm. If a force of 120 N has to be applied to the wheel. Find the mechanical advantage, velocity ratio and efficiency.
- 18 (a) Write the differences between mechanism and machine. 5
 - (b) The law of machine is given by the relation, P=0.04W+7.5, where P is the effort required to lift a load of W, both are in Newtons. Determine mechanical advantage and efficiency of the machine when load is 2kN and velocity ratio is 40.

4054] 4 #