С14-м-405

4451

BOARD DIPLOMA EXAMINATION, (C-14) OCTOBER/NOVEMBER-2018
 DME - FOURTH SEMESTER EXAMINATION

FLUID MECHANICS AND HYDRAULIC MACHINERY

Time : 3 Hours]
[Total Marks: 80

PART-A

Instructions : \quad 1. Answer All questions.
2. Each question carries three marks.
3. Answer should be brief and straight to the point and shall not exceed
five simple sentences.

1. Define (a) Viscosity (b) Surface tension of fluids.
2. Calculate the intensity of pressure at a depth of 5 km in the Indian Ocean, if the specific gravity of sea water is 1.025
3. Write the applications of Bernoulli's theorem.
4. Distinguish between steady uniform flow and unsteady uniform flow.
5. Write the expression for loss of head due to friction in a pipe flow and explain each term
6. State Chezy's formula. What is meant by Hydraulic mean depth?
7. Find the force of jet impinging on a flat plate moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$, the jet velocity is $25 \mathrm{~m} / \mathrm{s}$ and diameter of jet is 20 mm . Take mass density of water as 1000 $\mathrm{kg} / \mathrm{m}^{3}$
8. Write the classification of water turbines.
9. Write the differences between impulse and reaction turbines.

10 . What is pump and give its classification?

PART-B

Instructions : 1. Answer any Five questions.

2. Each question carries ten marks.
3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer
4. How the difference of pressure at two points is determined using manometer? Explain with neat sketch.
5. (a) Draw a neat sketch of Venturimeter and state its working principle.
(b) A Venturimeter $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ is used for measuring the flow of oil (sp.gr 0.8), the oil mercury differential gauge shows a deflection of 250 mm . Find the discharge of oil if the coefficient of meter is 0.98 . Take specific gravity of mercury as 13.6
6. A 15 m long pipe is inclined at an angle of 30° with the horizontal. The smaller section of the pipe is at lower level and is of 100 mm diameter and the larger section of the pipe is 300 mm diameter. Determine the difference of pressure between the two sections in $\mathrm{N} / \mathrm{m}^{2}$, if the pipe is uniformly tapering and the velocity of water at the smaller section is $2 \mathrm{~m} / \mathrm{s}$
7. A jet of water moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ strikes on a single vane. The vane is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of jet and transmits power P_{1}. If the same jet strikes a series of similar vanes mounted on a wheel under the same conditions, transmits power P_{2}. Find the ratio between P_{1} and P_{2} and efficiency of jet.
8. A pelton wheel operates under a head of 600 m , out of which one third head is lost in friction in the penstock. Mean diameter of wheel is 3.5 m and runs at 200 rpm . Find the power developed and hydraulic efficiency if nozzle discharge is $100 \mathrm{lit} / \mathrm{s}$. Assume coefficient of velocity C_{v} as 0.98 , bucket angle at outlet is 15°
9. Draw a sketch showing installation of centrifugal pump and explain function of each component.
10. A double acting reciprocating pump delivers oil of sp.gr. 0.82 through a height of 8 m from the pump. The suction head is 5 m and piston speed is $4 \mathrm{~m} / \mathrm{s}$, the diameter of the cylinder is 10 cm . Taking the efficiency of the pump as 60%, find the power required to drive the pump.
11. (a) What is draft tube and state its uses?
(b) Prove that maximum efficiency for a series of moving blades struck by a jet is 50%
