

C16-A/AA/CH/CHST/C/CM/EC/EE/M/AEI/MNG/MET/IT/TT/PKG-102

5002

BOARD DIPLOMA EXAMINATION, (C-16)

MARCH / APRIL - 2019

FIRST YEAR (COMMON) EXAMINATION ENGINEERING MATHEMATICS - I

Time: 3 Hours [Total Marks: 80

PART - A

 $2 \times 15 = 30$

Instructions:

- (1) Answer any 15 questions.
- (2) Each question carries 2 marks.
- (3) Answer should be brief and straight to the point and shall not exceed five simple sentences.
- 1 Find the value of $\log_4 64$.
- 2 Define a proper fraction and give an example.
- 3 Resolve $\frac{1}{(x-2)(x-3)}$ into partial fractions.
- 4 If $A = \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}$ then find A^2 .
- 5 If $\begin{vmatrix} 2 & 1 \\ 3 & x \end{vmatrix} = 1$ find x.
- **6** If $A = \begin{bmatrix} 2 & 5 & -3 \\ 7 & 6 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 7 \\ 3 & -5 & 4 \end{bmatrix}$ then find $A^T + B^T$.
- 7 Write the formula for $\sin(A-B)$ and $\cos(A-B)$.
- 8 Write the formula for $\sin^3 A$ and $\cos^3 A$.
- 9 Simplify $\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta}.$
- 10 State Cosine rule.

5002] 1 [Contd...

C16-A/AA/CH/CHST/C/CM/EC/EE/M/AEI/ MNG/MET/IT/TT/PKG-102

- 11 Find the modulus of $\frac{3-4i}{5+7i}$.
- 12 Find the real and imaginary parts of $\frac{1}{1+i}$.
- Find the equation of the line passing through the points (1, -2), (-2, 3).
- 14 Find the equation of the line passing through the point (3, -4) and parallel to the line 3x + 5y 21 = 0.
- Find the equation of the circle whose centre is (-1, 2) and radius is 3.
- 16 Find the radius of the circle $x^2 + y^2 + 4x 6y = 0$.
- 17 Evaluate $\lim_{x \to 1} \frac{x^2 4x + 3}{x^2 + 3x 4}$.
- 18 Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.
- 19 Differentiate $2 \sin x + 3 \tan^{-1} x 7 \log x$ with respect to 'x'.
- 20 Differentiate $\frac{2x+3}{5x-2}$ with respect to 'x'.

PART - B $10 \times 5 = 50$

Instructions:

- (1) Answer any **FIVE** questions.
- (2) Each question carries TEN marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **21** (a) Find the adjoint of the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$
 - (b) Solve the equation x y + z = 2, 2x + 3y 4z = -4, 3x + y + z = 8 by Cramer's rule.
- 22 (a) Prove that $\frac{\sin 85^{\circ} \sin 35^{\circ}}{\cos 35^{\circ} \cos 85^{\circ}} = \frac{1}{\sqrt{3}}$.
 - (b) Prove that $\cos^2 A + \cos^2 (60^\circ + A) + \cos^2 (60^\circ A) = \frac{3}{2}$.

5002] 2 [Contd...

C16-A/AA/CH/CHST/C/CM/EC/EE/M/AEI/ MNG/MET/IT/TT/PKG-102

23 (a) Prove that
$$\sin^{-1} \left[\frac{4}{5} \right] + \sin^{-1} \left[\frac{5}{13} \right] = \cos^{-1} \left[\frac{16}{65} \right]$$
.

- (b) Prove that $\tan^{-1} \left[\frac{1}{4} \right] + \tan^{-1} \left[\frac{3}{5} \right] = \frac{\pi}{4}$.
- 24 (a) Find the angle between the line 2x y + 3 = 0 and x + y 2 = 0.
 - (b) If (3, 4) is one end of a diameter of the circle $x^2 + y^2 4x 6y + 11 = 0$ find the other end of the diameter.
- **25** (a) Differentiate $\log[\sin(\log x)]$ w.r.t. 'x'.
 - (b) Find $\frac{dy}{dx}$, if $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$.
- 26 (a) If $y = (\sin x)^{(\sin x)(\sin x)...}$, then find $\frac{dy}{dx}$.
 - (b) If $u(x, y) = x^2 + xy + y^2$, find $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial y^2}$.
- 27 (a) Find the equations of tangent and normal to the curve $y = x^2 3x + 2$ at (2, 0)
 - (b) Find the lengths of the tangent, normal, subtangent and subnormal for the curve $y = x^3 2x^2 + 4$ at (2, 4).
- 28 (a) Find the maximum and minimum values of $2x^3 9x^2 + 12x + 16$.
 - (b) Find the dimensions of a rectangle of maximum area having a perimeter of 36ft.

5002]